
REPORT DOCUMENTATION PAGE' Form Approved

OMB No. 0704-0188
Public rape»«, burden for ft:s colleojion of information is estimated to average 1 hour per response, including the time (Of reviewing instructions, searching existing data sources oatherina
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway Suite
1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

10/7/97
3. REPORT TYPE AND DATES COVERED

Final, 7/8/96 -10/7/97
4. TITLE AND SUBTITLE

A Highly Functional Decision Paradigm Based on Nonlinear Adaptive
Genetic Algorithm

6. AUTHOR(S)

Andrew Kostrzewski, Jeongdal Kim

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Physical Optics Corporation
Engineering & Products Division
20600 Gramercy Place, Suite 103
Torrance, California 90501

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

DAAH04-96-C-0063

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

A/tö 3*35-0. Inf/rSA?

The views, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army position,

i&nD.sTrrW^^ qn «iPMrnflrrri ^ "ther dnciimentylnn.

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) ~~

In Phase II, the genetic algorithm (GA) developed in Phase I was refined and integrated with a neural

network for network topology optimization. In addition, a Mathlink GA was developed as a Mathematica

module. POC wrote the Mathematica plug-in module as a function optimizer using Mathlink. The GA route

optimizer was written, tested, and demonstrated. On the hardware side, a TMS320C80-based parallel DSP

board was used as a testbed for parallel GA. The GA programs running on the parallel computing hardware
exhibited a significant speedup.

p£lC<$jALTnimm
SCTED &

14. SUBJECT TERMS

Network Topology Optimization, Mathlink, Mathematica Plug-In, GA Route
Optimizer, DSP

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified
NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

70

16. WIÜLÜÜDE

20. LIMITATION OF ABSTRACT

SAR
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18
298-102

Finafl 097.3331 Army GAU
Contract No.: DAAH04-96-C-0063

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 Significance 1
1.2 POC's Approach as Proposed 1
2.0 PHASE II RESULTS 2
2.1 Highlights of Phase II Results 2
2.2 Refinement of the Software 4
2.2.1 Introduction of Windows DLL Module 5
2.2.2 Description of GA Optimizer 5
2.3 Genetic Neural Network Design 6
2.3.1 Evolving Neural Network 6
2.3.2 Structure of a Genetic Neural Network 7
2.4 Parallel GA with DSP-Selection of a Commercially Existing DSP Board 9
2.5 Mathlink Version of GA Optimizer 11
2.5.1 Description of Mathlink Version of GA Optimizer 12
2.5.2 Advantages of POC Optimizer Module 13
2.6 Other Software Development 13
2.6.1 Troop Transportation Global Optimization Problem 13
2.6.1.1 Description of the Problem 14
2.6.1.2 Analysis of the Problem 14
2.6.1.3 Cost Function for the Troops Transportation Double-Sorting Global

Optimization Problem 17
2.6.2 GA Route Scheduler 18
3.0 PHASE II DEMONSTRATION 20
3.1 Network Generator 20
3.1.1 Description of the XOR Problem 21
3.1.2 POC Neural Network Generator 21
3.2 Genetic Neural Network 22
3.2.1 Population Generation 22
3.2.2 Mapping of Genotype to Phenotype 23
3.2.3 Fitness Function 24
3.2.4 Genetic Operation of GNN .*25
3.2.5 Genetic Neural Network 25
3.2.5.1 Menus 25
3.2.5.2 Network Parameter Information 26
3.2.5.3 GA Statistics 26
3.2.5.4 Command Controls 26
3.3 Mathlink Optimizer 26
3.4 Function Optimizer Update 27
3.4.1 Dynamic Link Library APIs : 27
3.4.2 Software update 28
3.5 Building an application on TI DSP/Genesis 29
4.0 CONCLUSIONS 31
5.0 REFERENCES 31

19980519 138

Final 1097.3331 Army GAII
Contract No.: DAAH04-96-C-0063

1.0 INTRODUCTION

1.1 Significance

Progress in information technology over the past two decades has dramatically increased the
amount of information that any given user needs to handle. Information workers are now
presented with more information that they can hope to assimilate. The information technology
explosion has confronted data users with incredible volumes of data, which mask rather expose the
useful information that is required to make timely, intelligent decisions. This obviously further
complicates the control of processing units that must be located remote for either security or cost
reasons. This adds further complexity to large-military-system data management problems for all
types of Army, Air Force, Navy, and Marine Corps needs. For example, Desert Storm required
transportation of troops/equipment over long distances with large numbers of degrees of freedom
such as departure/arrival schedules for ships, connecting flights, troops, and military equipment.
Optimizing a transportation route in such a case requires considering a large number of connecting
points. In fact, even in such a seemingly simple case the number of statistical problems is large.

Current GA techniques, though much faster than even the fastest non-GA convergence techniques,
are not as fast as POC's Fast Evolving Parallel Genetic Algorithm (FEPGA) by an order of
magnitude. This advantage becomes critical for large systems with more than 10 degrees of
freedom. These degrees of freedom, which define the dimensionality of specific military systems,
represent the space-time domain (x,y,z,t) plus a number of constraints specific to the given data
management problem.

1.2 POC's Approach as Proposed

For fast decision making in an exponentially growing search domain, Physical Optics Corporation
(POC) proposed for Phase I a universal decision module based on a FEPGA, which not only has
an edge in convergence speed, but also has several additional features:

1. The FEPGA can learn the historical convergence (or generational evolution)
between parents, between offspring, and between parents and offspring. This
characteristic allows the FEPGA to search for a global and therefore robust
solution, rather than local solutions. The FEPGA performs intelligent adaptive
offspring selection, making it well suited for decision making in rapidly
changing environments.

2. Through this adaptive selection process, the FEPGA eliminates the huge proportion
of redundant offspring by means of a very simple computational fitness function.
As a result, the FEPGA can afford to search a large data space or handle decision
making for a large-dimensionality problem. In Phase II, we implemented a
FEPGA that can handle problems of up to 20 dimensions through parallel
processing.

3. The FEPGA can adjust the rate of evolution. This is useful for time-dependent
problems. Responding to sensor inputs at variable rates, the FEPGA controls its
sensitivity and adaptability. For example, in a rapidly changing environment the

Final 1097.3331 Army GA II
Contract No.: DAAH04-96-C-O063

FEPGA will speed up evolution to adapt quickly; when there is little change in the
environment, the FEPGA can slow down evolution and concentrate on spanning
the relationship of parents and offspring in the current generation. This allows the
decision making system to increase its sensitivity to prepare for unexpected subtle
changes in the environment.

4. The tunable rate of generation evolution is the key feature in the FEPGA. At
initialization, crossover is the dominant factor, but its importance later decreases,
maintaining the average convergence gradient (ACG) and conserving convergence
time. The crossover and mutation rates are optimized using real-time ACG values.
More specifically, if we observe degrading ACG we reduce the crossover rate.
The rate is determined by fuzzy logic rules, which in turn are determined by the
history of the convergence, the similarity of the parents, and the magnitude of the
convergence gradient.

5. Conventional GAs have a fixed fitness function (i.e., a fixed boundary condition),
which prevents them from adapting easily to rapidly changing environments. The
FEPGA, on the other hand, has a tunable fitness function (i.e., an adjustable
boundary condition), making it agile in a dynamic environment.

For Phase II, POC proposed to expand the FEPGA, integrating it into a parallel neural computing
environment, and to investigate commercial application possibilities such as route optimization. In
Phase II, POC did investigate these areas, with the results documented in this report.

The structure of this report is as follows. Section 2 describes the Phase II results . After a listing
of the highlights of Phase II research, each category of the results is presented in detail in the order
of description of software refinement, genetic neural network design, parallel GA with DSP,
Mathlink version of GA optimizer, and other software development efforts. Section 3 describes
software created in Phase II. The POC neural network generator is presented as well as a genetic
neural network, Mathlink optimizer, and the new version of the function optimizer. Executable
files for these programs are on the enclosed diskette.

2.0 PHASE II RESULTS

2.1 Highlights of Phase II Results

In Phase I, POC had demonstrated a universal decision making method based on GA and fuzzy
logic. Specifically, POC completed the following:

1. Designed parallel genetic algorithm evolvers
2. Performed computer simulation
3. Determined the transfer function and population size
4. Maximized efficiency of mutation
5. Determined the adaptability of fuzzy rules to GA.

Based on these results, POC set several objectives for Phase II, including refining and optimizing
the GA algorithm, designing a neural network using the fast-evolving fuzzy logic-based genetic

Final 1097.3331 Army GAU
Contract No.: DAAH04-96-C-0063

algorithm, and designing and implementing the parallel multiprocessor computing platform. The
three major milestones for Phase II research efforts set were:

1. Optimization of the nonlinear adaptive parallel computing paradigm;
Implementation of the high speed parallel multiprocessor computing platform; and
Integration of the parallel computing paradigm and the parallel computing platform
into an adaptive neural network.

2.
3.

In order to meet these three milestones, POC established five Phase II technical objectives:

Objective 1. Optimize and refine the fast evolving fuzzy logic-based genetic algorithm. This
will include applying the dynamic parallel programming method to genetic
algorithms and completing the fuzzy rules that monitor and control each GA
iteration.

Objective 2. Design a neural network using the fast evolving fuzzy logic-based genetic
algorithm. This will include selecting a neural network model for a particular
application based on selecting a problem domain and a network architecture.
The main goal of this objective focuses on the adaptive training of a neural
network using POC's fast evolving fuzzy logic-based genetic algorithm.

Objective 3. Design and implement the parallel multiprocessor computing platform. This
will include designing a three-dimensional multi-digital signal processor (DSP)
computing platform using commercially available DSP boards, interconnect
topologies, and interfaces between the modules.

Objective 4. Implement an algotecture that is the integration of the developed algorithm and
the platform. This will finalize the Phase II prototype implementation.

Objective 5. Optimize the Phase II prototype. This will include a demonstration of the Phase
II prototype. An evaluation of the optimized prototype will be performed in
order to develop a commercially viable high dimensionality decision making
system for Phase III.

To meet Objective 1, the genetic algorithm written in Phase I was developed into a general
purpose scheduler optimized with a fuzzified genetic algorithm. Although the scheduler
problem looks simple enough for a human agent, its combinatorial complexity becomes daunting
as the number of inputs increases. However, with its parallel and global search power, the GA
performs combinatorial searches in problem spaces that are otherwise prohibitively large.

POC made crucial modifications to the design of the GA optimization package, so that it can be
adapted readily to a broad range of application areas. POC also developed a "Mathlink" version of
the optimization module to make it callable from Mathematica™, with the objective of making it
more commercially attractive.

To meet the second objective, POC integrated a GA with neural networks (NNs). An example
may clarify why this is useful. In a classification or financial prediction problem, where a neural
network is trained with the data, a large number of variables affect the output, and the number of
possible combinations among them is enormous. If a developer or user must try all the possible

Final 1097.3331 Army GAM
Contract No.: DAAH04-96-C-0063

combinations of input variables, train a network, and check the results, it requires several days or
even weeks just to identify the set of input variables that affect the result. Needless to say, as the
number of inputs grows the number of possible combinations grows exponentially. If instead we
use a genetic algorithm to find the best combination of input variables for NN training, we can
avoid training countless neural network configurations that would be abandoned eventually
anyway. Even though the problem sets for which genetic algorithms and neural networks are best
suited are not the same, a genetic algorithm can facilitate the selection of the data set and NN
architecture. For that reason, POC developed the genetic neural network described in more detail
in later sections.

To meet Objective 3, POC implemented the GA in a parallel computing environment. We selected
the TI 320C80 DSP, a fully programmable parallel processor, as the parallel computing platform.
The processors on the C80 are connected by a crossbar network to on-chip SRAM and to a high
speed external memory transfer controller for fast data transfer. This makes the use of shared
memory efficient.

To meet Objectives 4 and 5, POC implemented a genetic algorithm in the parallel DSP
environment, achieving a considerable speedup.

The highlights of Phase II are, in summary:

1. The GA program developed in Phase I was refined. POC repackaged the GA
optimization modules as Dynamic Link Libraries that is callable from any Windows
application.

2. The GA has been integrated with a neural network for network topology
optimization. In this software development effort, POC used GA to evolve neural
network structure to select the best combination and structure of neural network
parameters.

3. A parallel DSP board was selected and installed, and a GA was tested on it. POC
selected a TMS320C80 DSP board with a parallel computation architecture, and ran
the GA program on it.

4. A Mathlink GA was developed as an external module of Mathematica. POC wrote
the Mathematica plug-in module as a function optimizer using Mathlink.

5. The GA Route Optimizer was written, tested, and demonstrated. The GA route
optimizer was implemented, and its usefulness for solving troop transportation
problems was demonstrated.

These topics are discussed in some detail in the following sections.

2.2 Refinement of the Software

The initial GA program had many non-trivial limitations: The fact that it was DOS-based made it
difficult to use. The list of fitness functions was predetermined, restricting its practical
applicability. The dynamic range of each gene was limited to positive integer values. We

Final 1097.3331 Army GA II
Contract No.: DAAH04-96-C-0063

revamped the whole software package to make it useful for virtually any application that needs an
optimization module.

2.2.1 Introduction of Windows DLL Module

Windows™ DLLs are very similar in concept to DOS libraries. Unlike static DOS libraries,
however, DLLs (Dynamic Link Libraries) are linked to the main program at run-time so that the
routines can be used by one or more programs. During compilation and linking, a program finds
the DLLs that contains the routines it needs. After the program is loaded, these routines are
dynamically linked. The advantages of DLLs over static library routines is that they can be linked
simultaneously to multiple applications.

In Phase II, POC repackaged the GA optimization modules in DLL format, separating them from
the user interface module, and developed a GUI for the program. Another improvement in Phase
II is the added capability for the user to select a preset fitness function or type in any other fitness
function. Thus, the user can put frequently used functions into a data file, but still can use the
system with any other custom-made function.

2.2.2 Description of GA Optimizer

In entering a function, the arguments must be called xl, x2, ..., up to a maximum of xlO.
Algebraic notation is used to enter an expression involving the arguments. Parentheses can be
used, as can exponentiation. The built-in functions, such as abs, sin, if-else, are listed in Table 2-
1. If a string is entered incorrectly, the program warns of a parsing failure.

Table 2-1. Built-in functions in GA Optimizer with Number of Arguments

abs one ifelse three *
atan one In one

atan2 two log one
ceiling one Pi no

cos one round one
exp one sin one
floor one sqrt one

x,y,z. Returns x,y,z

Once a function is selected or entered, the arguments are assumed to be bounded by 0 and 10, but
the user can modify the range as needed. The search for extrema is carried out to a tolerance of
±0.1 on each argument, and the user can change the tolerance range as well. The bounds and
tolerances are set by a dialog invoked by clicking the gene ranges button; the current gene ranges
(argument ranges) are displayed in red in the upper right panel.

Final 1097.3331 Army GAII
Contract No.: DAAH04-96-C-0063

Optimization is initiated by clicking the Optimize button. For each iteration, the iteration count is
displayed, as well as information regarding the actions taken by the genetic algorithm in that
iteration.

While the optimization is proceeding, the Cancel button is available to abort a lengthy optimization.
The final results of a converged optimization process are shown in the lower right panel. Multiple
sessions can be initiated using File/New, though only one problem can be optimized at a time.

The File/Maximum Number of Iterations function, as its name implies, sets a maximum number of
iterations. The GA Optimizer has been made easier to use, even for a user with minimal
background in computing.

2.3 Genetic Neural Network Design

Genetic algorithms and neural networks are both modeled after biological systems in nature; the
GAs imitate genetic evolution, and NNs mimic the brain. Each is suited to different types of
problems. GA is primarily a search mechanism, testing out thousands of possible solutions to a
problem and evaluating the results. For a GA to be applicable, some sort of model or function
must be available against which to evaluate the output for each set of inputs the GA tries. Given an
appropriate function for evaluation, the GA can find the best mix, best order, or best grouping.

A neural network tries to make sense of inputs and outputs by building some kind of internal
model or function to connect them. This makes it good at pattern recognition and prediction based
on data.

Given these properties, GAs can enhance neural networks. In Phase n, POC used GAs to find the
best input combination for neural network training and the optimal neural network architecture for
any given problem.

2.3.1 Evolving Neural Network

The powerful search capabilities of GAs can be combined with the learning capabilities of a neural
network, using the GA to search through data to find the set of variables that will support the most
accurate model, saving a great deal of training time. POC wrote software to automate much of the
neural network design and development that a developer otherwise does by hand, by trial and
error. These tedious tasks include testing/training data set selection, and determining which input
variables to use. In our system, the GA is used to evolve neural network structures and select
which input variables are significant. This evolving, learning, adapting artificial life capability is a
powerful problem solving paradigm that can be used to meet many real world challenges.

This system was developed to meet the need to easily and quickly discover the best data elements
and neural network architectures to build effective neural network applications. Many hours of
human effort are spent attempting to find the best networks manually. It is clear that an effective

FinaPl 097.3331 Army GA II
Contract No.: DAAH04-96-C-0063

automation tool is needed to off-load these hours of effort onto computers; POC applied GA
techniques to this purpose.

2.3.2 Structure of a Genetic Neural Network

The program combines a GA and an NN so that the former determines the optimal structure of the
latter. Specifically, it does the following:

1. Builds and validates training and test data sets
2. Creates a population of candidate input variables and neural structures
3. Builds the neural networks
4. Trains them
5. Evaluates them
6. Selects the best networks, in terms of some fitness function
7. Pairs up the genetic material representing the inputs and neural structure of these

networks, and exchanges genetic material between them
8. Puts in a few mutations for a flavor of random search
9. Goes back into the training/testing cycle again.

This continues for a defined number of generations, for a defined period of time, or until an
accuracy goal is reached (see Figure 2-1).

Fuzzified Genetic Algorithm

Figure 2-1
Genetic neural network system.

Finaf 1097.3331 Army GAII
Contract No.: DAAH04-96-C-0063

We represent the architecture of a network of N units by a connection control matrix C of
dimension N x (N+l) (see Figure 2-2). The first N columns of matrix C represent the connectivity
relationships among units in the neural network, and the final (N+l) columns store the threshold
biases for the unit. For example, in Figure 2-2 a unit that receives two inputs will have a threshold
bias of 1, and otherwise 0.

1 Origin Node

Destination

Node

1 2 3 4 5 bias
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 1 1 0 0 0 1
4 1 1 0 0 0 1
5 0 0 1 1 0 1

o
000000000000110001110001001101

o

Figure 2-2
Conversion from connection control matrix at top, to bit strings, center,

to network architecture at bottom.

Each entry Q;j in the matrix C is a member of the connection control set S, and indicates the nature
of the connection from unit to unit. Thus, column i of C represents the fan-out of connections
from unit i. Similarly, row j represents the fan-in of connections to unit j. The bit string in the
middle of Figure 2-1, which has been created by the concatenation of successive rows of matrix C,
is the population to be processed by the genetic operators.

Note that many different neural network architectures are implemented in a given generation. We
automate neural network design by two adaptive processes: genetic evolution through generations
of network architecture spaces, and back propagation learning in individual networks to evaluate
the selected architectures. Thus, cycles of learning in an individual architecture are embedded
within cycles of evolution in populations. Each learning cycle presents an individual neural

Final 1097.3331 Army GAM
Contract No.: DAAH04-96-C-0063

network with the set of input and output pairs that define the task. The back propagation learning
algorithm then adjusts the network connection weights so that it performs the input/output mapping
task with increasing accuracy. Each evolution cycle evaluates one population of network designs
according to their associated fitness values to yield an offspring population of more highly adapted
network designs.

Back propagation is computationally intensive, but the effectiveness of genetic algorithms'
combinatorial search capabilities would be difficult to overstate. For example, a problem
consisting of finding the best combination (subset) of 20 inputs and up to 15 hidden nodes in a
back propagation neural network has over 16 million permutations. To train each network in a
hard, full search would be an appropriate project for a supercomputer, but with genetic algorithms
a very good solution often appears in less than 1500 evaluations, which is less than one ten-
thousandth of the total possible configurations. With the help of some statistical data analysis,
highly fit networks are often found in the first generation evaluated. This is clearly an efficient
means for discovering effective network structure/input combinations.

Note that by the nature of genetic algorithms these networks are not necessarily optimal, but do
typically represent good solutions.

2.4 Parallel GA with DSP-Selection of a Commercially Existing DSP
Board

POC used the Texas Instruments (TI) TMS320C80 processor integrated with a Matrox Genesis
board from Matrox Imaging Products Group (see Figure 2-2), a complete PC/AT plug-in board for
parallel processing. It supports four 32-bit parallel processors (PPs) and one 32-bit master
processor (MP), all connected by a crossbar network. Additional C80 nodes, each with one MP
and four PPs, can be mounted on the main board. This is one reason POC has selected the C80
for GA parallel computing. More processing power can be added easily depending on the
processing power requirements for the particular application. It can be configured as SIMD (single
instruction, multiple data) or MIMD (multiple instruction, multiple data). Therefore, a flexible
system configuration can be designed taking into consideration cost, speed, and other parameters
specific to each application.

Final' 1097.3331 Army GAII
Contract No.: DAAH04^96-C-0063

Grab Port Interface VMChannel

32

VIA

ceo pel
port l/F

FMS320C80
• (C80)

NOA2

yiA

PCI C80
l/F port
T

©

Secondary 32-bit PCI bus

SDRAM
buffer

8,16,32
or 64 MB

(Up to 132 MB) *
64

SDRAM
buffer _

8,16,32 PJ4-J NOA©
or 64 MB

TMS320C80
(C80)

PCI-to-PCI
Bridge
PCI l/F

j^r v
Host 32-bit PCI Local Bus

X

Figure 2-3
TMS320C80 processor board.

The major advantages of using the TMS320C80 DSP platform for parallel computing are:

• Not bus dependent
• Standardized building block for multiprocessing
• Wide variety of modules available for specific applications
• Upgradable performance at low incremental cost.

The four communication ports of the TMS320C80 offer a wide range of connection possibilities.
It has a 32 bit address and data bus, and operates at 50 MHz, performing 100 MFLOPS.

Figure 2-3 shows the C80 processor board configuration. The high-performance link connecting
acquisition, display, and processing is through the VIA (Video Interface ASIC), a powerful
interface for the input port and the C80 connection, the SDRAM, and a PCI master/slave bus
interface. The wide range of Matrox Genesis modules includes: general purpose modules carrying
SRAM, multi-C80 modules; and application-specific modules, which carry a C80 and an I/O

10

Final 1097.3331 Army GA II
Contract No.: DAAH04-96-C-0063

interface. All of the modules connect directly to the PCI bus interface of the Pentium PC
motherboard.

Each C80, which can communicate with the main board through the VIA and in turn through the
PCI-to-PCI bridge, has the following features:

One 32-bit RISC master processor with integral FPU
Four 32-bit integer advanced parallel processor DSPs
32 kbytes of internal RAM shared among processors (expandable to 50 kbytes)
Crossbar for optimal internal connectivity
Transfer controller for high performance external I/O
50 MHz system clock
Internal FPU capable of 100 MFLOPS
Up to 2 billion RISC-like operations per second
2.4 Gbytes/second sustainable on-chip data transfer rate
400 Mb/s off-chip peak transfer rate

Layer-to-layer interconnection is available between C80 processor boards.

2.5 Mathlink Version of GA Optimizer

POC's commercialization efforts for the GA Optimizer have been fruitful; a mathematical library
that links the optimization module to Mathematica™ was written and favorably received by
Wolfram Research, Inc. A sample run of the GA module in Mathematica follows, where bold face
indicates what the user types in and normal Courier font shows that response from Mathematica:

link = Install ["e:\\pocsoft\\minimax"]
LinkObject [e:\pocsoft\minimax, 2, 2]

Minimize2 ["sin(xl_ -x2*cos(x2)", -10.0, 10.0, 0.1,
-10.0, 10.0, 0.1]

{-1.5625, -9.53125, -10.4772]

?Minimize2
Minimize2 [f_String, Ll_Real, Tl_Real, L2_Real,

U2_Real, T2_Real minimum value of the 2-argument function
f with sets of the lower bounds, and the tolerances:
Property of Physical Optics Corporation.

Uninstall [link]
e:\pocsoft\minimax

11

Final 1097.3331 Army GAII
Contract No.: DAAH04-96-C-0063

2.5.1 Description of Mathlink Version of GA Optimizer

To use the GA Optimizer in Mathematica, the user copies the executable file "minimax.exe" that
accompanies this report to any designated directory, starts Mathematica, and then makes a
connection to the file by entering

link = Install ["e: Wpocsof tWminimax"]

This assumes that "minimax.exe" resides in the "e:\pocsoft" directory. Once the link is made, one
can find the minimum value of a function with up to ten arguments. The first-order function is
used here for the purpose of illustration:

MiniMizel ["first_order_function here", Ll, Ul, Tl]
where Ll: the lower bound of the argument

Ul: the upper bound of the argument
Tl: the tolerance

Similarly, the user type the following command for a second-order function:

MiniMize2 ["second_order_function here", -10.0, 10.0, 0.1, -10.0,
10.0, 0.1]

The output is given in the form of a list such as:

{value_of_argl_at_minimum,
value_of_arg2_at_minimum,
the minimum value}

One can find the maximum value of the function and the values of the arguments at that point in a
similar way by calling the "maximize" function:

Maximize2 ["200 - (xl A 2 + xl - 11) ~2 - (xl + x2 A 2 -7) ~2",
-6.0, 6.0, 0.1, -6.0, 6.0, 0.1]

Multiple search sessions are possible. After completion of the task, the connection is broken by
entering:

Uninstall [link]

Figure 2-4 shows a plot of a function and its minimum value as found by a GA Optimizer routine
called from within Mathematica.

12

Final'1097.3331 Army GA II
Contract No.: DAAH04-96-C-0063

In[6] : =

Plot[Sin[x] + x/5, {x, -10, 10}]

Out [6] =

-Graphics-
lu[7j:m

MiniMizel["sin(xl) + xl/5", -10.0, 10.0, 0.01]
Out f7j =

{-8.05664, -2.59086}

Figure 2-4
Mathlink version of GA Optimizer at work.

2.5.2 Advantages of POC Optimizer Module

One of the major features of a genetic algorithm is its ability to find a globally near optimal value
without falling into local optima. While Mathematica™ can search for the global maxima and
minima only for linear functions, the GA Optimizer does so for virtually any type of function.

Furthermore, POC's Mathlink version of the GA Optimizer includes 10 routines for finding
maximum values: MaxiMizel,..., MaxiMizelO. Mathematica has no corresponding functions.

2.6 Other Software Development

2.6.1 Troop Transportation Global Optimization Problem

Consider a large-volume, high dimensionality, military data management problem; Troop
Transportation Global Optimization, for which the time to reach an optimal solution increases
logarithmically with the size of the problem (or with the number of degrees of freedom). Using
FEPGA, however, the base of the logarithm is reduced step-by-step, so that convergence time
depends much less critically on the size of the problem. This is because the rates of crossover,
mutation, and reproduction are adaptable, controlled by the chromosome pool first order
differential, which is a new internal parameter of the GA system. POC's GA system is parametric,

13

Final 1097.3331 Army GAU
Contract No.: DAAH04-96-C-0063

i.e., the crossover, mutation, and reproduction rates are controlled internally by the convergence
process.

2.6.1.1 Description of the Problem

The Troops Air Transportation (TAT) double-sorting global optimization problem belongs to the
general class of time-scheduling problems. Consider the example TAT problem shown in
Figure 2-5. At the start, the routing paths can be chosen almost arbitrarily, with, say, fixed
connection points (such as A, 2,7,10, 15, Q). Each flight path is organized as a binary stream, or
gene. For K planes, a single statistical realization is represented by K flight paths, so a
chromosome is K-dimensional.

Figure 2-5
TAT through 17 airports, from Port A to Port Q.

Each port (except A and Q) is numbered by a digit 1 through 15. The numbers in brackets
determine the specific flight, such as: A, (1), (2), (3), (4), Q, where four connecting ports are
always assumed. Figure 2-5 is only a spatial coordinate map; i.e., the schedule is not shown.

2.6.1.2 Analysis of the Problem

In order to demonstrate the feasibility of using FEPGA for global optimization of troop
transportation, we first perform problem quantization, or chromosome pool generation, and define
the fitness function. We make a number of simplifying assumptions, not to make the problem

14

Final 1097.3331 Army GAU
Contract No.: DAAH04-96-C-0063

simple to solve (since much more complicated problems can be solved using the FEPGA), but
rather for clarity of explanation.

We make the following simplifying assumptions:

• We transport only troops (i.e., single soldiers).
• We transport only through the air (using airplanes).
• Although the military units are transported through a variety of airports (or ports),

all units are transported from port A to port Q as shown in Figure 2-5. For
simplicity, a constant number of four connecting ports is always assumed.

• The military units transported are sufficiently small (e.g., platoons) that they are not
partitioned for flight.

In spite of these simplifying assumptions, considerable flexibility is still implemented in the
program, such as variable numbers of units and troops, variable numbers of ports, planes, and
their locations, and variable plane speeds. Also, very flexible time schedules based on the
"window" concept are assumed.

The chromosome space (pool) is separately constructed from the travel path for each plane as
follows:

1) q-segmented numbering is introduced; e.g., the example travel path shown in
Figure 2-5 is translated into the following q-sequence:

(A, 2, 7, 10, Regular notation)

Jill I
(A, 1, 2, 3, q-sequence) (2-1)

2) All travel paths' regular notations are organized in sequence according to arithmetic
value; i.e., for two paths, as shown in Figure 2-5:

(2,7, 10, 15) and (3, 6, 9, 15) (2-2)

We construct two integers:

271015 and 36915 (2-3)

with larger integers following smaller.

3) A unique sequential number is attached to each integer. This route is shown on the
basis of a simple example. Assume only four connecting ports, three of which are

15

Final 1097.3331 Army GA II
Contract No.: DAAH04-96-C-0063

(2-4)

used for each travel path. If these ports are numbered 1, 2, 3, and 4, then the
following travel paths are possible:

123 124 234 134

132 142 243 143

213 214 324 341

231 241 342 314

312 412 412 413

321 421 421 431

They are organized in sequence:

123 124 132 134 142 143 213

$ $ £ $ $ $ $ (2-5)
(1) (2) (3) (4) (5) (6) (7)

This is a 24-number sequence.

4) The organized sequence is presented in the form of a binary stream; e.g.,

22 = 0 + 25 x 1 + 24 x 0 + 23 x 1 + 22 x 1 + 21 x 0 + 2°
= 0+16 + 0 + 4+2+0
= (010110) (2-6)

5) Each flight path is organized as a binary stream, or gene. Therefore, for a single
realization represented by K flight paths (some of them identical), equivalent to K
planes, we obtain K genes, so a chromosome is K-dimensional.

The maximum number of possible flight paths is:

(1/2)N!
(N-P)!

(2-7)

where N and P are integers, n! = n(n-l) (n-2) ..., N is the total number of ports,
and P is the number of connecting ports to be used for each flight. The (1/2) comes
from the fact that all flights are one-way. Since every flight path can be realized in
a number of ways, as in Eq. (2-7), and the number of possible paths is equal to the
number of planes K, the total number of realizations (or number of degrees of
freedom) is:

D=D(N,K;P)=
(l/2)N!lK

(N-P)!
(2-8)

16

Final 1097.3331 Army GAII
Contract No.: DAAH04-96-C-0063

For example:

N=50, P=4, K=200; then Eq. (2-8) evaluates to 101288, which is far to large for
conventional sorting.

2.6.1.3 Cost Function for the Troops Transportation Double-Sorting Global
Optimization Problem

The Troops Transportation Cost Function (T2CF) is defined as follows:

T2CF = Wt£ X ^Ek+wd.5: (MAX^TAV-tAj)
K q V i

+Wd„£ (MAX[0,tAi-TAi..])+WA,2 (faAX[0,TQi.-tQlJ

(-\

wA. MAX o5S
Lik-ck

v L • -V
f \

MAX 0,XLkn-Cn
V /

(2-10) +WA.£ (MAX[0,tQi-TQi.,])+WA.

+WR(MAX[0,Rik -MRT])+Wp

where the critical weighting factors are:

Wt Travel weighting factor
Wd% Wd" Departure schedule penalty weighting factors
WAS WA" Arrival schedule penalty weighting factors
Wa Penalty weighting factor for capacity of the plane
Wp Penalty weighting factor for capacity of the port
WR Penalty weighting factor for maximum allowable

travel time of troops.

These penalty factors should be adjusted according to the importance of a given constraint. For
example, if a not "too-late" arrival time is more critical than a not "too-early" arrival time, then

WA">WA\ (2-11)

The following term is a quadratic bracket:

MAX[0, H], (2-12)

which is either 0 if a given constraint is satisfied, or H if this constraint is violated.

The chromosome space is now tested against the T2CF cost function value, and the small T2CF
values are promoted by using the FEPGA route.

17

Final 1097.3331 Army GAII
Contract No.: DAAH04-96-C-0063

The next section outlines a preliminary version of the transportation scheduler that POC built.

2.6.2 GA Route Scheduler

To demonstrate the feasibility of using a genetic algorithm for a transportation optimization
problem, POC developed a scheduler that finds the shortest route through a set of cities. This
demonstration program made use of a Los Angeles area map, on which a number of cities were
identified as candidate "ports." The initial state of the program is shown in Figure 2-6.

■ tc

; JR3J

'ST
,»Ni
*t

i "tTÄ sra« Mfc=i

LWD KLfZ
II

FlliiiPsiit

- —-

-■■.mm m. mi «W

JW..K L:JI

- ^rm\ nrlE.

^CH
\!S3ms3ä:ä

<1K ̂ ^ ■ /W ■

.—p.

|V^

•'::■-■ -i-T BKSSSsfrr1 QPoc^soeouM- -i —r*v.;: .-»rfuipw i»£:i^-:- i

_

Figure 2-6
Initial state of route optimization problem

In this program, a map is displayed with a number of checkboxes for selection. Each checkbox is
associated with one of 16 cities. The user can select the cities he/she needs to visit by checking the
checkbox. The number of cities checked is displayed in the topmost textbox, the accumulated
route length in the second box, the optimized route length after optimization in the third box, and
the mileage saving in the last box. At the right of the screen, the original itinerary and the
optimized one are displayed. Figure 2-7 shows eight cities selected.

18

Final'1097.3331 Army GAII
Contract No.: DAAH04-96-C-0063

Figure 2-7
Input selection in the GA scheduler

In Figure 2-7, the textboxes reflect the changed statistics. The route length for the selected cities is
shown, with their names. The user now can click on the Optimize button and start optimization.

The stopping condition can be defined in any of a number of ways. In this program, the number
of iteration since the last improvement is compared with a preset threshold value. As long as the
stopping condition is not satisfied, a new mating pool is created based on the performance of the
previous population and crossover and mutation generate a new population, which then goes back
to the cycle. When the stopping condition is met, the optimization process ends and the program
displays the result as in Figure 2-8, which shows the optimized route and other statistics. At this
point, the user can start another round of optimization by clicking Redo, or can exit the program by
selecting Close.

19

Final 1097.3331 Army GAII
Contract No.: DAAH04-96-C-0063

Figure 2-8
Final result of optimization.

3.0

3.1

PHASE II DEMONSTRATION

Network Generator

POC's Fuzzified Evolving Parallel Genetic Algorithm (FEPGA) can find the best neural network
structure for a given problem. The FEPGA generates various neural network structures in
accordance with a number of fitness function generators. The neural network is trained on the
input data of the selected problem. The minimum squared error that guides the convergence of the
neural network is used as the fitness measure. The best structures found are input to the FEPGA
for evolution. The top level algorithm flow is as follows:

20

Final.1097.3331 Army GAU
Contact No.: DAAH04-96-C-0063

Create a population
Initialize the population
for i = 1 to max_iterations

for j = 1 to population_size
Decode chromosome
Build neural network
Train/evaluate neural network
Assign some evaluation score to the network performance
If it's a good one, then keep it in a list

next j
Selection
Pair mates
Crossover
Mutate

next i

3.1.1 Description of the XOR Problem

As a simple case to demonstrate a working neural network system, POC used the much-studied
exclusive OR (XOR) problem. This is a linearly non-separable problem that cannot be solved
without using hidden units. The input and the expected output for XOR is shown in Table 3-1.

Table 3-1 Input and Output of XOR Problem

Input Output
0 0 0
0 1 1
1 0 1
1 1 0

The XOR function maps two binary inputs to a single binary output as follows: 00->0, 01->1,
10->1,11->0. The XOR problem has been tested on the POC network builder (POCNET).

3.1.2 POC Neural Network Generator

The expanded POC Neural Network Generator interface is shown in Figure 3-1.

21

Final 1097.3331 Army GAM
Contract No.: DAAH04-96-C-0063

PQC Netwoik Generator

M:

■ Network Tjee—\

C B&J. Propagation

r IitiwC'(H»y

r-CATNN

C^ProbabiEsSc

r.tvs

TOTAL PASS

11000 ""i

ERROR RATE

10 0951 *

list- |2nd
[Variable Variable

Output. [Neural
Output nm 0.0000 1.0000 0.9085 !

2 0.0000 1.0000 1.0000 0.8997 i

3 0.0000 0.0000 0.0000 0.0817 f

4 1.0000 1.0000 0.0000 0.10G9

Äver-agö
ErtorRaie

TEST
INaiT

0.0951 i

REDO TRAIN NETWORK TEST DONE

Figure 3-1
Expanded Neural Network Generator.

3.2 Genetic Neural Network

3.2.1 Population Generation

The genetic algorithm generates a population with parameters that will be used in neural network
development. The network generation module of the POCNET must deal in variables such as the
number of inputs, number of hidden layers, number of hidden units, type of transfer function, and
the number of outputs. The XOR problem, which we have taken as our test case, has two inputs
and one output. The "number of inputs" is the number of variables that are fed to the neural
network, and the "number of records" is the total number of input data records used for training.
The number of hidden layers is usually one or two, depending on the complexity of the network.
For the XOR problem, four or five hidden units should be enough. The transfer function is a
tangent function or a logistic function, so a single bit is sufficient to represent it. The number of
outputs varies from problem to problem, but the output is always a single one-bit unit.

In sum, one string member of the population can be represented as:

1010 J V 01 J V 001 y V 01 J \ 01

number on inputs number of hidden layers number of hidden units type of transfer funciton number of outputs

The total number of bits used to represent the gene here is 13. The population pool can contain
few or many genes, depending on the complexity of the problem.

22

Fnal'1097.3331 Army GA II
Contract No.: DAAH04-96-C-0063

3.2.2 Mapping of Genotype to Phenotype

"Genotype" in artificial genetic systems refers to the total package of strings, or to individual
strings. The genotype is decoded to form a particular parameter set, or alternative solution. The
designer of an artificial genetic system has a variety of alternatives for coding both numeric and
nonnumeric parameters. Our task here is to map the string (genotype) to a neural network structure
(phenotype). To do so we use parameters such as neural network type, number of hidden layers,
total number of nodes, and transfer function. Neural network design using genetic algorithm has
been reported in a number of papers H-7]. Not only does the current work differ from theirs in
algorithmic details, but it also focuses on actual implementation of the paradigm.

The number of hidden layers can be 0, 1, or 2. The number of hidden neurons in a layer can vary
from 1 to 256. The transfer function can be logistic sigmoid, hyperbolic tangent, or linear. A
chromosome can encode four parameter as shown in Figure 3-2.

network type
number
of layers

number
of nodes transfer function

Figure 3-2
Structure of a chromosome.

For example, after initialization a GA population could have the following set of chromosomes:

011010101
101010101
110111010
111010111

This genotype could then be decoded to the corresponding phenotype:

011010101 >► BP, 2,5 logistic sigmoid

101010110 ->► BPNN.2, 5 hyperbolic tangent

110111010 >► LVQ, 1,6 hyperbolic tangent

111010111 >- LVQ, 2,5 linear

23

Final 1097.3331 Army GAII
Contract No.: DAAH04-96-C-0063

3.2.3 Fitness Function

The performance of a given neural network determines the fitness value assigned by the genetic
algorithm, represented by the average error rate. In this program, two types of transfer function
are used: a tangent function and a logistic function. How the error is calculated depends on the
neural network type used.

The hyperbolic tangent function is used as a transfer function to calculate the output y for each
node as follows:

y = \^)' (3"1)

where

D = w0 + Iwixi, (3-2)
i=l

where w0 is the bias of the node, each wf is a weight for the connection from the i-th node of the
previous layer, and xi is the input from the i-th node of the previous layer. For estimating
purposes, it is standard practice to use only linear transfer functions in the nodes of the output
layer.

The logistic function is expressed as follows:

y=(d^' (3"3)

where y is the output of the logistic function, the xi's are the inputs, and the wi's are the free
parameters. D is defined as in Eq. (3-2).

The neural network performance P for each input is calculated by the selected method, and the
error rate E is found by comparing P with the desired output O. Then the average error rate A is
given by the following simple formula:

IE
(3-4)

number of records

24

Final 1097.3331 Army GAM
Contract No.: DAAH04-96-C-0063

3.2.4 Genetic Operation of GNN

Each gene — i.e., each neural network architecture in our program — that performs well remains in
the population. After the neural network module is executed, pairs of genes are mated and undergo
crossover and mutation.

3.2.5 Genetic Neural Network

The first version of the genetic neural network (GNN) interface is shown in Figure 3-3 and the
corresponding executable is included on the attached diskette.

WfflKKMmff
GäRun About £wt

Nehr.nrk Fararror« lr='onr

r Nelwwk Type

t ' j Back Propagation

TimeDel-v

tftion

i|p|

- Number erf Hidden—.

3 \ \

7 i i

~ Number of Layer4-~~;

IB 1 ' »lllf
Bi' 2* iiiiiii

| Eft Statistics

1
' I I 0ebuSVatrr;|T[7t

; I j Uofpa« j iooo r

] j Brot Rat« |o.4040

Best Combination

\ \ ' Continuous Adaptive

■ Cor.»r,uoLi:Adapriv

J r T ränsfer Function—

\c Function

DOIIC Tangent

1

7 Login«: Function

1 j ! ' 0 0731
!

|] \ Linear Transfer Go GA'!!

EXIT

Figure 3-3
POC genetic neural network.

The GNN interface consists of menus, three frames, and two control buttons, each of which is
explained below.

3.2.5.1 Menus

The GNN has three menus: GaRun, About, and Exit. The functions of these menus are self-
explanatory: GaRun starts program execution. About displays software information, and Exit
allows the user to exit the program.

25

Final 1097.3331 Army GAM
Contract No.: DAAH04-96-C-0063

3.2.5.2 Network Parameter Information

This frame contains four subframes: Network Type, Number of Hidden [Units], Transfer
Function, and Number of Layers. Network Type offers a choice of the three types of network
supported in GNN: Back Propagation, Time Delayed Neural Network, and Continuous Adaptive
Time Neural Network. Combined with other parameters, it forms a unique neural network
topology for data training. Three numbers are displayed - 3, 5, and 7 -- in Number of Hidden
Units. The Transfer Function frame displays three functions: Logistic, Hyperbolic Tangent, and
Linear Function. One of these transfer functions is implemented in the hidden layer(s). The
Number of [Hidden] Layers frame is not implemented at this time; the number of hidden layers is
fixed at one. The three variable parameters can generate 27 combinations (3x3x3). The goal of
the software is to find the combination that minimizes the error rate.

3.2.5.3 GA Statistics

This frame contains two subframes, GA Progress Info[rmation] and Best Combination. The first
row in the Progress Information box is for debugging, and is immaterial to the software. The text
box in the second row displays the number of passes in the neural network training completed so
far. Every time the neural network iterates, it adjusts the weights depending on the performance of
the particular set of neurons and feeds back the result to the next iteration. Up to 1000 passes are
implemented now. The last row displays the fitness value of the chromosome that contains the
information on the neural network topology selected for data training: network type, number of
hidden units, and transfer function used. In the GNN, since a neural network is used to
approximate the fitness function, the fitness value of a genetic algorithm is the average error rate of
the neural network.

The Best Combination frame displays information about the best neural network topology found so
far in the current GNN session. It displays the network type, number of hidden units, type of
transfer function, and the value of the fitness function.

3.2.5.4 Command Controls

The two controls buttons in the GNN, Go GA and Exit, have the same effect as the two menus,
GaRun and Exit. When the user clicks on the Go GA button, one selection from each group in the
Network Parameter Information frame turns cyan, showing that the colored component has been
selected for constructing the neural network to be trained. The source code for GNN is listed in
Appendix 1.

3.3 Mathlink Optimizer

Figure 3-4 shows the use of POC's GA Optimizer Mathematica plug-in for finding maximum
values for a modified form of Himmelblau's function.

26

Final'1097.3331 Army GAU
Contract No.: DAAH04-96-C-0063

MaxiMize2 ["200 - (xlA2 + x2 - 11) A2 - (xl + x2A2 - 7)A2"/

-10.0, 10.0, 0.01, -10.0, 10.0, 0.01]

Out [26] =
{-2.80273, 3.134765625, 199.999324689125}

In [27]: =

MaxiMize2 [»200 - (xlA2 + x2 - 11)A2 - (xl + x2A2 - 7)A2",
-10.0, 10.0, 0.01, -10.0, 10.0, 0.01]

Out [27] =
{2.998046875, 2.001953125, 199.999870330066}

MaxiMize2 ["200 - (xlA2 + x2 - 11)A2 - (xl + x2A2 - 7)A2",
-10.0, 10.0, 0.01, -10.0, 10.0, 0.01]

Out [28]+
{-3.7793, -3.28125, 199.999835462295}

Figure 3-4
Sample run of MaxiMize for Himmelblau's function.

As shown in this figure, we can run Optimizer more than once to find multiple sets of argument
values, if there are any for the same optima.

3.4 Function Optimizer Update

The function minimization program developed at the start of this project was revised, and the five
most important functions were rewritten as Dynamic Link Libraries (DLLs), making them callable
from any Windows application program. These functions are functionString,
initializeMinimization, iterateMinimization, terminateMinimization, and getResults. This is another
step toward developing general-purpose Application Program Interfaces (APIs). It shows that GA
APIs can be used in many applications with just a slight code change. The source code is listed in
Appendix 2.

3.4.1 Dynamic Link Library APIs

DLLs are Windows-based program modules that can be loaded and linked at run time. Since most
non-trivial Windows programs are large because they include a graphical user interface as well as a
programming interface, it is customary for programmers to develop APIs in DLL format, so that
they can afford valuable functions to application developers while hiding code from the user. Of
the five functions converted to DLL format, functionString parses the input function string and
interprets it, and the others are self-explanatory. The algorithmic description using these functions
is as follows:

27

Final 1097.3331 Army GAII
Contract No.: DAAH04-96-C-0O63

functionString
initializeMinimization
for i = 1 to i < exit_value

iterateMinimization
i=i+l

end
terminateMinimization
getResults

To use these modules, all an application developer need do is to write a user interface and establish
a data communication channel among modules.

3.4.2 Software update

POC developed a sample Windows interface program to demonstrate the feasibility of porting GA
core functions to other applications. The GUI of the DLL test program is shown in Figure 3-5 and
its source code is listed in Appendix 3.

!§§ Genetic Algorithm DLL TEST

:;;EHXTWJ:.. Ver?*^
MM,E£

FunctionString LIST
-xr2 + 2*x1 +1
2*sinfx1l + cosfxll
x1*2-2*x1 +1

Optimized Value I
:::::^??::x;^S^jyjf

OPTIMIZE
..-t-r-yy.« „■■>:* ■«:;.:;

Parameters INFO
lowerBounds -10.0
upperBounds 10.0

tolerance 0.1

OptimizationMode

<• minimize C maximize

Num Of Genes: 118
Num Of GeneBit:

Chromosome Length:

MVIVIT ••" -H UUifiUUtt

Figure 3-5
Genetic algorithm DLL test program.

28

Final,1097.3331 Army GAII
Contract No.: DAAH04-96-C-0063

The user can select a function from the menu or type one in the FunctionString LIST box. The
functionStringO function picks up the string input, parses it, and builds a semantic tree. The range
of variables can be given using the Parameters INFO box. Here the minimum and maximum
boundary of each parameter can be adjusted. Optimization Mode allows the user to select either
minimization or maximization mode. Either initializeMinimization() or
initializeMaximization() will generate the initial values of chromosomes. At this point the user
can select OPTIMIZE to start evolution; iterateMinimization() will continue evolution until the
termination condition is met. The output information is reported in Optimized Value. Num of
Genes, Num of GeneBits, and Chromosome Length are intended to help the developers
understand the inner workings of the evolution process.

3.5 Building an Application on TI DSP/Genesis

The TI board hosts a 32-bit RISC master processor with an integrated floating point unit (FPU)
capable of 100 MFLOPS, and four 32-bit parallel processors with a combined power of 2 billion
operations per second. Its crossbar network has an on-chip data transfer rate of
2.4 Gbytes/second, significantly accelerating matrix calculation. To take full advantage of the
DSP's processing power, we established a fast communication channel between the motherboard
and the processor board, allowing us to take advantage of its memory resources, display, and input
capabilities. Figure 3-6 diagrams the relationship between the application and the subsystems.

Application

Processor Board Main Board

Data Buffer Data Input Display

Figure 3-6
Relationship between application and hardware subsystems.

The program code that establishes a communication channel and allocates buffer memory on the
processor board to the input is reproduced as Listing 3-1:

29

Final,1097.3331 ArmyGA II
Contract No.: DAAH04-96-C-0063

Listing 3-1 Establish Communication Channel and Allocate Buffer Memory.

// Allocate an application
MappAlloc(M_DEFAULT,&MilApplication);
// Disable default Matrox Imaging Library (MEL) error message display
MappControl(M_ERROR,M_PRINT_DISABLE);
// Retrieve previous and user handler pointer
MappInquire(M_CURRENT_ERROR_HANDLER_PTR,&HandlerPtr);
MappInquire(M_CURRENT_ERROR_HANDLER_USER_PTR,&HandlerUserPtr);
// Hook MDL error on function DisplayError()
MappHookFunction(M_ERROR_CURRENT,DisplayErrorExt,this);
// Allocate a system
MsysAlloc(M_SYSTEM_SETUP,M_DEF_SYSTEM_NUM,M_COMPLETE,
&MilSystem);

After informing the host computer of the application we are running, we allocate the processor
board system resources so that they can be used by the application. The search space is then
loaded in the memory buffer on the processor board for further processing. The code in
Listing 3-1 has been integrated into GA applications and a performance acceleration of 60% over
the same CPU without the processor board was observed as shown in Table 3-2.

Table 3-2. Convergence Time Versus Size of the Problem.

Search Algorithm Problem, Size N Convergence Time in seconds
for t = s and N = 10,000

Unordered Sequential 10,000 100
Ordered Sequential 10,000 13.29
GA w/o Tl C80 DSP 10,000 4
GA with Tl C80 DSP 10,000 0.2

This speedup is largely due to the C80's parallel processing capability. Some C80 processor board
performance benchmarks are listed in Table 3-3.

Table 3-3. Processing Performance Benchmarks of Tl TMS320C80.

Operation (512x512x8 images)

Histogram
Pattern
Matching

128x128 model
32x32 model

Convolution (with overflow saturation) 3x3
Image Rotation (bilinear interpolation)

Processing Time with C80
(running at 50 MHz)

3.0
10.0
20.0

9.5
22

30

Final, 1097.3331 Army GAII
Contract No.: DAAH04-96-C-0063

4.0 CONCLUSIONS

In this Phase II, POC developed a GA-based decision making system of high dimensionality with
high processing speed and robust optimization features. The proposed FEPGA technology has
been demonstrated in a number of applications: Mathlink optimizer, Route optimizer, Genetic
neural network, and Function optimizer. The genetic algorithm has also been implemented in a
parallel computing environment, resulting in a considerable speedup. The above applications are
just a few examples of how a genetic algorithm can be used.

The convergence speed of a genetic algorithm can be further improved by implementing it in a
distributed computing environment, in which the computing task is divided into multiple subtasks
with lower workloads. The genetic algorithm will be independently applied to subtasks for fast
optimization, and the final result will be tallied through variables in shared memory. Such an
implementation is suitable for problem domains such as aerial combat simulation or any
commercial games involving multiple players and requiring fast optimization.

5.0 REFERENCES

1. G. Miller, P. Todd, S. Megde, "Designing Neural Networks Using Genetic Algorithms,"
ICGA '89. pp. 379-384.

2. S. Harp, T. Sumad, A. Guha, "Towards the Genetic Synthesis of Neural Networks "
ICGA '89. pp. 360-369.

3. D.E. Rumhelhart, G. E. Hinton and R. J. Williams, "Learning Internal Representations by
Error Propagation," Parallel Distributed Processing: Explorations in the Microstructures of
Cognition, D. E. Rumhelhart and J. L. McLelland, Eds., MIT Press, pp. 318-362 (1986).

4. X. Yao, "A Review of Evolutionary Artificial Neural Networks," Tech Rep.
Commonwealth Scientific and Industrial Research Organization, Victoria (1992).

5. P. J. B. Hancock and L. S. Smith, "Gannet: Genetic Design of a Neural Network for Face
Recognition," in Proc. Parallel Problem Solving from Nature, H. P. Schwefel and R.
Manner, Eds. PPSN-1, Heidelberg: Springer Verlag, pp. 292-296 (1991).

6. D. Parisi, F. Cecconi, and S. Nolfi, "Econets: Neural Networks that Learn in an
Environment," Network, 1, pp. 149-168 (1990).

7. D. Whitley, T. Starkweather, and C. Bogart, "Genetic Algorithms and Neural Networks:
Optimizing Connections and Connectivity," Computing, 14, pp. 347-361 (1990).

31

Final -1097.3331 Army GA It
Contract No.: DAAH04-96-C-0063

APPENDIX 1
GENETIC NEURAL NETWORK

NeuroGen - 1

' POC Genetic Neural Network
' Neural Network Parameter Optimization Program
' 12/96 - 10/97
' Physical Optics Corporation

Private Sub cmdExit_Click(
End

End Sub

Private Sub cmdGo_Click()

RunGeneticSearch

End Sub

Private Sub Form_Load()
Dim Return_Code%
'Mainl.Show

BesrValue* = 1#
Return_Code% = Initialize()
Setup_Data

End Sub

Private Sub mnuAbout_Click()
About.Show

End Sub

Private Sub mnuExit_Click()
End

End Sub

Private Sub mnuGaRun_Click()
RunGeneticSearch

End Sub

Mainl

POC NetCreator Main Module
Nov 1996 - Jan 1997

Private Sub cmdDone_Click()
'Free the network from memory
Ret% = Release_Network(Net_ID%)
Net_ID% = -1 'to show that it is no longer valid

unload Me
End

End Sub

Private Sub cmdRedo_Click()
Dim Return_Code%

Mainl.txtError.Text = " "
Mainl.txtNumPass.Text = " "

' reset the data display
For Record_Nbr% = 1 To Nbr_Records% + 1

For Column_Nbr% = 1 To 4 ' Needs change later
Mainl.gridStats.Row = Record_Nbr%
Mainl.gridStats.Col = Column_Nbr%
Mainl.gridStats.Text = " "

Next Column_Nbr%
Next Record_Nbr%

'Free the network from memory
Ret% = Release_Network(Net_ID%)
Net_ID% = -1 'to show that it is no longer valid

Return_Code% = Initialize()
Setup_Data

End Sub

Private Sub cmdTrain_Click()
Build_Network
Train_Network

End Sub

Private Sub Form_Load()
Dim Return_Code%

Return_Code% = Initialize()
Setup_Data

' set the row and column size
For Record_Nbr% = 0 To Nbr_Records% + 1

For Column_Nbr% = 1 To 4 ' Needs change later
gridStats.RowHeight(Record_Nbr%) =4 60
gridStats.ColWidth(Column_Nbr%) = 820

Next Column_Nbr%
Next Record_Nbr%

gridStats.RowHeight(6) = 570
gridStats.ColWidth(O) = 1000

' display the input number
For Record_Nbr% = 1 To Nbr_Records%

Mainl.gridStats.Row = Record_Nbr%
Mainl.gridStats.Col = 0
Mainl.gridStats.Text = Record_Nbr%

Next Record Nbr%

Mainl

' display captions
Mainl.gridStats.Row = Record_Nbr%
Mainl.gridStats.Col = 0
Mainl.gridStats.Text = " Average Error Rate"

Mainl.gridStats.Row = 6
Mainl.gridStats.Col = 0
Mainl.gridStats.Text = " TEST INPUT"

Mainl.gridStats.Row = 0
Mainl.gridStats.Col = 1
Mainl.gridStats.Text = "1st Variable"

Mainl.gridStats.Row = 0
Mainl.gridStats.Col = 2
Mainl.gridStats.Text = "2nd Variable"

Mainl.gridStats.Row = 0
Mainl.gridStats.Col = 3
Mainl.gridStats.Text = "Output"

Mainl.gridStats.Row = 0
Mainl.gridStats.Col = 4
Mainl.gridStats.Text = "Neural Output"

End Sub

Private Sub mnuFileItem_Click(Index As Integer)
Select Case Index

Case 0
Unload Me
End

Case 2
Mainl.PrintForm

End Select
End Sub

Private Sub SSOptionl_Click()
Net_Type% = BP

End Sub

Private Sub SS0ption2_Click()
Net_Type% = TDNN

End Sub

Private Sub SS0ption3_Click()
Net_Type% = CATNN

End Sub

Private Sub SS0ption4_Click()
Net_Type% = PNN

End Sub

Private Sub SS0ption5_Click()
Net_Type% = LVQ

End Sub

Private Sub tlbPrint_Click()
Mainl.PrintForm

End Sub

Modulel - 1

Option Explicit

'Genetic Algorithm Dynamic Link Library Declarations

Declare Function InitBinary Lib "GENE200.DLL" (ByVal StartingID%, ByVal EndingID%, ByVal Peg
gedID%, ByVal HighLow%, ByVal StrandLen%, ChromeGene%, ChromeValue#) As Integer

Declare Function Initlnt Lib "GENE200.DLL" (ByVal StartingID%, ByVal EndingID%, ByVal StartV
al%, ByVal EndVal%, ByVal Unique%, ByVal PeggedGenel%, ByVal GenelVal%, ByVal StrandLen%, Chrome
Gene%, ChromeValue#) As Integer

Declare Function InitZero Lib "GENE200.DLL" (ByVal PopSize%, ByVal StrandLen%, ChromeGene%,
ChromeValuett) As Integer

Declare Function SelectPercent Lib "GENE200.DLL" (ByVal Percent*, ByVal HighLow%, ByVal PopS
ize%, ChromeValuett, SurvivorList%) As Integer

Declare Function SelectRoulette Lib "GENE200.DLL" (ByVal RoulOrder%, ByVal HighLow%, ByVal P
opSize%, ChromeValue#, SurvivorList%) As Integer

Declare Function RefillBinaryRand Lib "GENE200.DLL" (ByVal NumberOfSurvivors%, ByVal PopSize
s, ByVal StrandLen%, ChromeGene%, ChromeValue#, SurvivorList%) As Integer

Declare Function RefillClone Lib "GENE200.DLL" (ByVal NumberOfSurvivors%, ByVal PopSize%, By
Val StrandLen%, ChromeGene%, ChromeValue#, SurvivorList%) As Integer

Declare Function PairRandom Lib "GENE200.DLL" (ByVal PopSizel, ParentPair%) As Integer
Declare Function MateTailSwap Lib "GENE200.DLL" (ByVal StrandLen%, ByVal NumPairs%, ChromeGe

ne%, ParentPair%) As Integer
Declare Function MateTwoCut Lib "GENE200.DLL" (ByVal PopSize%, ByVal StrandLen%, ByVal NumPa

irs%, ChromeGene%, ParentPair%) As Integer
Declare Function MateTwoCutSwap Lib "GENE200.DLL" (ByVal PopSize%, ByVal StrandLen%, ByVal N

umPairs%, ChromeGene%(), ParentPair%) As Integer
Declare Function MuteRandEx Lib "GENE200.DLL" (ByVal RandExRate#, ByVal PreserveGeneOne%, By

Val PopSize%, ByVal StrandLen%, ChromeGene%) As Integer
Declare Function MuteRev Lib "GENE200.DLL" (ByVal RandRevRate#, ByVal PreserveGeneOne%, ByVa

1 PopSize%, ByVal StrandLen%, ChromeGene%) As Integer
Declare Function Rand_List Lib "GENE200.DLL" (ByVal Nbr_Items%, Index_List%()) As Integer

'These array's are dimensioned to 50 to allow room for more
'cities if you like.
Global DistanceArray(50, 50) As Integer
Global IndexList(50) As Integer
Global SequencedList(50) As Integer
Global BestChrome(50) As Integer

Global BestValue As Double
Global FitnessValue As Double
Global Net_Error As Double
Global BestType As Integer
Global BestHiddenNum As Integer
Global BestFunction As Integer

'NOTE: IMPORTANT
'These arrays, with GENE200.DLL MUST be dimensioned in this manner
Global ChromeGene%(0 To 174, 0 To 174)
Global ChromeValue#(0 To 174)
Global SurvivorList%(0 To 174)
Global ParentPair%(0 To 174)

'Misc other global variables
Global NotFirstPass As Integer
Global HighLow As Integer
Global Const Nbr_Selected_Parameters = 3

'Newly added global variables: Genetic Parameters
Global Net_Type As Integer
Global Nbr_Hiddens(3) As Integer
Global Transfer Function(3) As Integer

Module2 - 1

Option Explicit

#If Winl6 Then
Declare Function Initialize Lib "NNW16212.dll" () As Integer
Declare Function Build_BP Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs

As Integer, ByVal Nbr_Hidden_Layers As Integer, Nbr_Hiddens As Integer, Transfer_Function As Int
eger, ByVal Nbr_Outputs As Integer) As Integer

Declare Function Build_AT Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs
As Integer, ByVal Nbr_Hidden_Layers As Integer, Nbr_Hiddens As Integer, Transfer_Function As Int
eger, Nbr_Connections As Integer, ByVal Max_Tau As Integer, ByVal Nbr_Outputs As Integer) As Int
eger

Declare Function Build_PNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs
As Integer, ByVal Nbr_of_Records As Integer, ByVal Nbr_Outputs As Integer) As Integer

Declare Function Build_GRNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Input
s As Integer, ByVal Nbr_of_Records As Integer, ByVal Nbr_Outputs As Integer) As Integer

Declare Function Init_Weights Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal LowerJL
imit#, ByVal Upper_Limit#) As Integer

Declare Function Init_Taus Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Lower_Limi
t#, ByVal Upper_Limit#) As Integer

Declare Function Propagate_BP Lib "NNW16212.dll" (ByVal Network_ID As Integer, Input_Array#,
Desired_Output_Array#) As Integer

Declare Function Propagate_AT Lib "NNW16212.dll" (ByVal Network_ID As Integer, Input_Array#,
Desired_Output_Array#) As Integer

Declare Function Propagate_PNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal sigmat
, Input_Array#, Output_Array#) As Integer

Declare Function Propagate_GRNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal sigma
#, Input_Array#, Output_Array#) As Integer

Declare Function Calc_Net_Error Lib "NNW16212.dll" (ByVal Network_ID As Integer, Desired_Out
put_Array#) As Double

Declare Function Train_BP Lib "NNW16212.dll" (ByVal Network_ID As Integer, Learn_Rate#, Mome
ntum#) As Integer

Declare Function Train_AT Lib "NNW16212.dll" (ByVal Network_ID As Integer, Learn_Rate#, Mome
ntum#, Tau_Learn_Rate#, Tau_Momentum#, ByVal Commit_Changes As Integer) As Double

Declare Function Train_PNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Record_ID%
, Input_Array#, Output_Array#) As Integer

Declare Function Train_GRNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Record_ID
%, Input Arrayt, Output_Array#) As Integer

Declare Function
Declare Function
Declare Function

As Integer
Declare Function

As Integer
Declare Function

Integer) As Integer
Declare Function
Declare Function

in#, ByVal log_mag#,

Release_Network Lib "NNW16212.dll" (ByVal Network_ID As Integer) As Integer
Release_All_Networks Lib "NNW16212.dll" () As Integer
Save_Net Lib "NNW16212.dll" (ByVal FileName$, ByVal Network_ID As Integer)

Load_Net Lib "NNW16212.dll" (ByVal FileName$, ByVal Network_ID As Integer)

MoveNets Lib "NNW16212.dll" (ByVal 01d_Index As Integer, ByVal New_Index As

GetNetID Lib "NNW16212.dll" () As Integer
SetParameters Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal log_ga
ByVal tanh_gain#, ByVal tanh_mag#, ByVal lin_slope#) As Integer

#ElseIf Win32 Then
Declare Function Initialize Lib "NNW32212.dll" () As Integer
Declare Function Build_BP Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs

As Integer, ByVal Nbr_Hidden_Layers As Integer, Nbr_Hiddens As Integer, Transfer_Function As Int
eger, ByVal Nbr_Outputs As Integer) As Integer

Declare Function Build_AT Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs
As Integer, ByVal Nbr_Hidden_Layers As Integer, Nbr_Hiddens As Integer, Transfer_Function As Int
eger, Nbr_Connections As Integer, ByVal MaxJIau As Integer, ByVal Nbr_Outputs As Integer) As Int
eger

Declare Function Build_PNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs
As Integer, ByVal Nbr_of_Records As Integer, ByVal Nbr_Outputs As Integer) As Integer

Declare Function Build_GRNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Input
s As Integer, ByVal Nbr_of_Records As Integer, ByVal Nbr_Outputs As Integer) As Integer

Declare Function Init_Weights Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Lower_L
imit#, ByVal Upper_Limit#) As Integer

Declare Function InitJTaus Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Lower_Limi
t#, ByVal Upper_Limit#) As Integer

Module2 - 2

Declare Function Propagate_BP Lib "NNW32212.dll" (ByVal Network_ID As Integer, Input_Array#,
Desired_Output_Array#) As Integer

Declare Function Propagate_AT Lib "NNW32212.dll" (ByVal Network_ID As Integer, Input_Array#,
Desired_Output_Array#) As Integer

Declare Function Propagate_PNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal sigma#
, Input_Array#, Output_Array#) As Integer

Declare Function Propagate_GRNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal sigma
#, Input_Array#, Output_Array#) As Integer

Declare Function Calc_Net_Error Lib "NNW32212.dll" (ByVal Network_ID As Integer, Desired_Out
put_Array#) As Double

Declare Function Train_BP Lib "NNW32212.dll" (ByVal Network_ID As Integer, Learn_Rate#, Mome
ntumt) As Integer

Declare Function Train_AT Lib "NNW32212.dll" (ByVal Network_ID As Integer, Learn_Rate#, Mome
ntum#, Tau_Learn_Rate#, Tau_Momentum#, ByVal Commit_Changes As Integer) As Double

Declare Function Train_PNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Record_ID%
, Input_Array#, Output_Array#) As Integer

Declare Function Train_GRNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Record_ID
%, Input_Array#, Output_Array#) As Integer

Declare Function Release_Network Lib "NNW32212.dll" (ByVal Network_ID As Integer) As Integer
Declare Function Release_All_Networks Lib "NNW32212.dll" () As Integer
Declare Function Save_Net Lib "NNW32212.dll" (ByVal FileName$, ByVal Network_ID As Integer)

As Integer
Declare Function Load_Net Lib "NNW32212.dll" (ByVal FileName$, ByVal Network_ID As Integer)

As Integer
Declare Function MoveNets Lib "NNW32212.dll" (ByVal 01d_Index As Integer, ByVal New_Index As

Integer) As Integer
Declare Function GetNetID Lib "NNW32212.dll" () As Integer
Declare Function SetParameters Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal log_ga

in#, ByVal log_mag#, ByVal tanh_gain#, ByVal tanh_mag#, ByVal lin_slope#) As Integer
#End If

NETBLDRl - 1

Option Explicit

Global Net_ID As Integer 'a unique identifier for our neural network
'Global Net_Type As Integer 'The type of network we're building (BP, TDNN, ...)
Global Nbr_Records As Integer

'Constants to make things clearer in code
'Network Types
Global Const BP = 0
Global Const TDNN = 1
Global Const CATNN = 2
Global Const PNN = 3
Global Const LVQ = 4

'Transfer functions -
Global Const LOGISTIC = 0
Global Const TANH = 1
Global Const LINEAR = 2

'Network Architecture Variables

'Data Arrays
Global DataArrayO As Double 'An array to hold our data

'We will dimension it in Build_Network function
Global Test_Array#(2) ' 'an array to hold a record of test input data
Global Test_Output_Array#(1)

Sub Build_Network()

Dim Nbr_Inputs%
Dim Nbr_Hidden_Layers%
'ReDim Nbr_Hiddens%(3)
'ReDim Transfer_Function%(3)
ReDim Nbr_Connections%(3)
Dim Max_Tau%
Dim Nbr_Outputs%
Dim Ret%

'Let's set some network parameters...
Nbr_Inputs% = 2
Nbr_Hidden_Layers% = 1
'Nbr_Hiddens%(1) =5
'Nbr_Hiddens%(2) = 5
Transfer_Function%(1) = TANH
'Transfer_Function%(2) = LOGISTIC
Nbr_Connections%(1) = 1
Nbr_Connections%(2) = 1
Max_Tau% = 10
Nbr_Outputs% = 1

Net_ID% = GetNetlDO

If Net_ID% < 0 Then
MsgBox "Error getting network ID", 48, "POC Network Generator"

End If

Select Case Net_Type%
Case BP

Ret% = Build_BP(Net_ID%, Nbr_Inputs%, Nbr_Hidden_Layers%, Nbr_Hiddens%(0) , Transfer_
Function%(0), Nbr_Outputs%)

Case TDNN
Ret% = Build_AT(Net_ID%, Nbr_Inputs%, Nbr_Hidden_Layers%, Nbr_Hiddens%(0), Transfer_

Function!(0), Nbr_Connections%(0), MaxJTau, Nbr_Outputs%)
Case CATNN

Ret% = Build_AT(Net_ID%, Nbr_Inputs%, Nbr_Hidden_Layers%, Nbr_Hiddens%(0), Transfer_
Function!(0), Nbr_Connections%(0), Max_Tau, Nbr_Outputs%)

Case PNN
Ret% = Build_PNN(Net_ID%, Nbr_Inputs%, Nbr_Records%, Nbr_Outputs%)

NETBLDR1

Case LVQ
Ret% = Build_GRNN(Net_ID%, Nbr_Inputs%, Nbr_Records%, Nbr_Outputs%)

End Select
If Ret% < 0 Then

MsgBox "Error building network", 48, "POC Network Generator"
End If

End Sub

Sub Setup_Data()
'Let's setup our data here, you may wish to use your own functions
'to do this when building applications
ReDim DataArray#(4, 3) '4 rows, 3 columns (2 inputs, 1 output)
Nbr_Records% = 4.

'Let's put xor data in the array
DataArray#(l, 1) = 1
DataArray*(1, 2) =0
DataArray#(l, 3) = 1

DataArray*(2, 1) =0
DataArray*(2, 2) = 1
DataArray*(2, 3) = 1

DataArray*(3,
DataArray*(3,
DataArray*(3,

DataArray*(4,
DataArray*(4,
DataArray*(4,

1) = 0
2) = 0
3) = 0

1) = 1
2) = 1
3) = 0

End Sub

Sub Train Network()

Dim Ret%
Dim Passes As Long
Dim Record_Nbr%
Dim Column_Nbr%
Dim error_fact*
'Dim Net_Error#
Dim Commit_Changes%
Dim sigma*
Dim cum error*

'A variable to hold return codes
'The number of passes through the data
'A simple index of records
'A simple index of columns
'The mean squared error of BP/TDNN/CATNN network
'The Average Absolute Error of the network

'Whether to update weights this pass
'The acuity factor for PNN's and LVQ's
'An accumulation of error across all records

ReDim Learn_Rate#(3)
ReDim Momentum*(3)
ReDim Tau_Learn_Rate#(3)
ReDim Tau Momentum*(3)

'The network learning rate
'The network momentum rate
'CATNN connection 'look back' learning rate
'CATNN connection 'look back' momentum

ReDim Input_Array#(2) 'an array to hold a record of input data
ReDim Output_Array#(2) 'an array to hold a record of Output data
ReDim Neural_Output_Array#(1) 'an array to hold the neural results

Learn_Rate#(1) = 0.8
Learn_Rate#(2) =0.4
Momentum*(1) =0.2
Momentum*(2) =0.1
Commit_Changes% = 1

'set hidden layer learning rate
'set output layer learning rate
'set hidden layer Momentum
'set output layer Momentum
'We're not doing epoch based learning, so always update weights

Tau_Learn_Rate#(1) =
problem

Tau_Learn_Rate#(2) =
Tau_Momentum#(1) = 0
Tau_Momentum*(2) = 0
error_fact# = 1000
Net Error* = 1000

'We're not updating CATNN connections, as this isn't a time base

'some big value to start
'some big value to start

NETBLDR1_- 3

PassesS = 0
sigma# =0.01

'Initialize Weights
Ret% = Init_Weights(Net_ID, -0.3, 0.3)
If Net_Type% = CATNN Or Net_Type% = TDNN Then

Ret% = Init_Taus(Net_ID, -0.3, 0.3)
End If

' display of input and output
For Record_Nbr% = 1 To Nbr_Records%

For Column_Nbr% = 1 To 3 ' Needs change later
Mainl.gridStats.Row = Record_Nbr%
Mainl.gridStats.Col = Column_Nbr%
Mainl.gridStats.Text = Format?(DataArray*(Record_Nbr%, Column_Nbr%), "0.0000")

Next Column_Nbr%
Next Record_Nbr%

Do While (Net_Error# > 0.001 And Passes& < 1000) 'train until the error meets a criteria
DoEvents
PassesS = Passes& + 1
cum_error# = 0
For Record_Nbr% = 1 To Nbr_Records%

'Load the current record into the Input and Output arrays
Input_Array#(1) = DataArray*(Record_Nbr%, 1)
Input_Array#(2) = DataArray*(Record_Nbr%, 2)
Output_Array#(1) = DataArray*(Record_Nbr%, 3)

'Propagate forward
Select Case Net_Type%

Case BP
Ret% = Propagate_BP(Net_ID%, Input_Array#(0), Neural_Output_Array#(0))

Case CATNN, TDNN
Ret% = Propagate_AT(Net_ID%, Input_Array#(0), Neural_Output_Array#(0))

Case PNN, LVQ
'no need to propagate PNN, LVQ first during training

End Select
If Ret% <> 0 Then

MsgBox "Error Propagating in NNWIN.DLL", 48, "POC Network Generator"
End If

'Calculate error
Select Case Net_Type%

Case BP, CATNN, TDNN
error_fact# = Calc_Net_Error(Net_ID%, Output_Array#(0))
If error_fact# < 0 Then

MsgBox "Error Calculating Network Error in NNWIN.DLL", 48, "POC Network
Generator"

End If
Case Else

'no need to calc net error for PNN/LVQ during training
End Select

Select Case Net_Type%
Case BP

Ret% = Train_BP(Net_ID%, Learn_Rate#(0), Momentum*(0))
Case TDNN, CATNN

Ret% = Train_AT(Net_ID%, Learn_Rate#(0), Momentum*(0), Tau_Learn_Rate#(0) , T
au_Momentum#(0), Commit_Changes%)

Case PNN
Ret% = Train_PNN(Net_ID%, Record_Nbr%, Input_Array#(0), Output_Array#(0))

Case LVQ
Ret% = Train_GRNN(Net_ID%, Record_Nbr%, Input_Array#(0), Output_Array#(0))

End Select
If Ret% < 0 Then

MsgBox "Error building network", 48, "POC Network Generator"
End If

NETBLDR1

0})

(0))

'Propagate forward to get the network's prediction
Select Case Net_Type%

Case BP
Ret% = Propagate_BP(Net_ID%, Input_Array#(0) , Neural_Output_Array#(0))

Case CATNN, TDNN
Ret% = Propagate_AT(Net_ID%, Input_Array#(0) , Neural_Output_Array#(0))

Case PNN
Ret% = Propagate_PNN(Net_ID%, sigma#, Input_Array#(0), Neural_Output_Array#(

Case LVQ
Ret% = Propagate_GRNN(Net_ID%, sigma#, Input_Array#(0), Neural_Output_Array#

End Select
If Ret% <> 0 Then

MsgBox "Error Propagating in NNWIN.DLL", 48, "POC Network Generator"
End If

'Calculate error
cum_error# = cum_error# + Abs(Output_Array#(1) - Neural_Output_Array#(1))

'Mainl->GNN
'NeuroGen.gridStats.Row = Record_Nbr%
'NeuroGen.gridStats.Col = 4
'NeuroGen.gridStats.Text = Format$(Neural_Output_Array#(1) , "0.0000")

Next Record_Nbr%

Net_Error# = cum_error# / Nbr_Records%

'Show resulting error and the number of pass
NeuroGen.txtError.Text = Format$(Net_Error#, "0.0000")
NeuroGen.txtNumPass.Text = Str$(PassesS)

'NeuroGen.gridStats.Row = 5
'NeuroGen.gridStats.Col = 4
'NeuroGen.gridStats.Text = Format$(Net Errort, "0.0000")

Loop

End Sub

Module4 - 1

Function CustomMutation(ByVal PreserveGeneOne%, ByVal PopSize%, ByVal StrandLength%_)

'This is an example of a custom function that you can
'build to compliment the GAWindows Library, customizing
'for special cases and for "hybrid" applications

'This mutation reverses pieces of chromosomes using "knowledge"
'of distances ("domain knowledge")

'Find the two highest intercity distances in each chromosome
'Mutate every chromosome because this method is so effective!

Static GeneSegment%(50)
Static RevGeneSeq%(50)

For i% = 1 To PopSize%
'set the highest and second highest distances to the first one
'just to have something to compare against
HighestDist# = DistanceArrayl(IndexList%(ChromeGene%(i%, 1) -1), IndexList%(ChromeGenel

(i%, 2) - 1))
SecondHighestDist# = DistanceArray%(IndexList%(ChromeGene%(i%, 1) -1), IndexList%(Chrom

eGene%(i%, 2) - 1))

For j% = 1 To StrandLength% - 1

'If highest distance is smaller than this distance
If HighestDist* < DistanceArray%(IndexList%(ChromeGene%(i%, j%) - 1), IndexList%(Chr

omeGene%(i%, j% + 1) - 1)) Then
'then the current highest distance is now the second highest
SecondHighestDist# = HighestDist#
'and the first cut point in the chromosome is now the second
CutPoint2 = CutPointl
'and the new highest distance is this distance
HighestDist# = DistanceArray%(IndexList%(ChromeGene%(i%, j%) - 1), IndexList%(Ch

romeGene%(i%, j% + 1) - 1))
'and this is the new highest cut point
CutPointl = j%

End If

If (SecondHighestDisti < DistanceArray%(IndexList%(ChromeGene% (i%, j%) - 1), IndexLi
st%(ChromeGene%(i%, j% + 1) -1)) And (HighestDist* <> DistanceArray%(IndexList%(ChromeGene%(i%,
j%) - 1), IndexList%(ChromeGene%(i%, j% + 1) - 1)))) Then

SecondHighestDisti = DistanceArray%(IndexList%(ChromeGene%(i%, j%) - 1), IndexLi
st%(ChromeGene%(i%, j% + 1) -1))

CutPoint2 = j%
End If

Next j%

'Found the Highest and SecondHighest Intercity distances
'Now order the outpoints along the chromosome
If CutPointl <= CutPoint2 Then

CutOne = CutPointl
CutTwo = CutPoint2

Else
CutOne = CutPoint2
CutTwo = CutPointl

End If

'Increment CutOne so as to "cut" on next boundary
CutOne = CutOne + 1

'Check for preservation of Gene 1
If (CutOne = 1) And (PreserveGeneOne = 1) Then

CutOne = 2
End If

Module4 - 2

'Sometimes reverse to end of string just for fun
If Rnd > 0.5 Then

CutTwo = StrandLength%
End If

'Now extract the genes
For j% = CutOne To CutTwo

GeneSegment%(j% - CutOne) = ChromeGene(i%, j%)
Next j%

'Now reverse it
For j% = 0 To (CutTwo - CutOne)

RevGeneSeq%(j%) = GeneSegment%(CutTwo - CutOne - j%)
Next j%

'Now Stick it Back
For j% = CutOne To CutTwo

ChromeGene%(i%, j%) = RevGeneSeq%(j% - CutOne)
Next j%

Next i%

End Function

Function Fitness(PopSize As Integer, StrandLength As Integer)

'Determine miles travelled for each chromosome in population

For i% = 1 To PopSize% 'for each chrome in population

'Calculate Total Miles (Chromosome's "Value")
ChromeValue#(i%) = 0 'zero out the value of the chromosome
For j% = 1 To StrandLength% - 1

'accumulate the distances
ChromeValue#(i%) = ChromeValue*(i%) + DistanceArray%(IndexList%(ChromeGene%(i%, j%)

- 1), IndexList%(ChromeGene%(i%, j% + 1) -1))

Next j%

Next i%

'Look for lowest path so far
If NotFirstPass% = 0 Then

BestValue* = ChromeValue*(1)
For j% = 1 To StrandLength%

SequencedList%(j%) = ChromeGene%(1, j%)
Next j%
NotFirstPass% = 1

End If

For i% = 1 To PopSize%
'if we're looking for the lowest and this chrome is lower than the lowest
'or if we're looking for the highest and this chrome is higher than the highest
If (HighLow = 0 And ChromeValue*(i%) < BestValue*) Or (HighLow = 1 And ChromeValue*(i%)

> BestValue*) Then
'Take this chromosome's distance as best
BestValue* = ChromeValue*(i%)
'and copy the chromosome to the desired sequence of cities to travel
For j% = 1 To StrandLength%

SequencedList%(j%) = ChromeGene%(i%, j%)
Next j%

End If
Next i%

'return the smallest distance
Fitness = BestValue*

End Function

Module4 - 3

Function RunGeneticSearch() As Integer
'Show Hourglass 'cause we're busy!
NeuroGen.MousePointer = 11 'EDITED

'Set Genetic parameters
PopSize% = Nbr_Selected_Parameters% * 4 'A good rule of thumb for this problem
StrandLength% = Nbr_Selected_Parameters%
GenerationLimit% = Nbr_Selected_Parameters% * 4 'another rule of thumb for TSP
StartingID% = 1
EndingID% = PopSize%
StartVal% = 1
EndVal% = StrandLength%
Unique% = 0
PeggedGeneOne% = 0
GeneOneValue% = 0
Percent* =0.5
RandExRatett =0.5
RandRevRate# =0.5
PreserveGeneOne% = 1

'A flag for determining if this is the first time through
NotFirstPass% = 0

'Make the world topsy turvey (scramble the random #'s)
Randomize

'Now build the population of integers of City ID's
Result% = Initlnt%(l, PopSize%, 1, StrandLength%, Unique%, PeggedGeneOne%, GeneOneValue%, St

randLength%, ChromeGene%(0, 0), ChromeValue#(0))

'Start the Genetic LifeCycle here
Do While (Generations% < 1) 'GenerationLimit%)

'Take Care of Business elsewhere in Windows
Result% = DoEventsO

For i% = 1 To PopSize%
'Decode chromosome
Net_Type% = ChromeGene%(i%, 1) - 1
Select Case Net_Type%

Case 0
NeuroGen.txtNetTypel.BackColor = &HFFFF00

Case 1
NeuroGen.txtNetType2.BackColor = &HFFFF00

Case 2
NeuroGen.txtNetType3.BackColor = &HFFFF00

End Select

Select Case ChromeGene%(i%, 2)
Case 1

Nbr_Hiddens%(1) =3
NeuroGen.txtNumHiddenl.BackColor = &HFFFF00

Case 2
Nbr_Hiddens%(1) =5
NeuroGen.txtNumHidden2.BackColor = &HFFFF00

Case 3
Nbr_Hiddens%(l) = 7
NeuroGen.txtNumHidden3.BackColor = &HFFFF00

End Select

Transfer_Function%(2) = ChromeGene%(i%, 3) - 1
Select Case Transfer_Function%(2)

Case 0
NeuroGen.txtFunctionl.BackColor = &HFFFF00

Case 1
NeuroGen.txtFunction2.BackColor = &HFFFF00

Case 2
NeuroGen.txtFunction3.BackColor = &HFFFF00

End Select

Module4 - 4

'TEST
NeuroGen.txtDebugl.Text = Str$(Net_Type%)
NeuroGen.txtDebug2.Text = Str$(Nbr_Hiddens%(1))
NeuroGen.txtDebug3.Text = Str$(Transfer_Function%(2))

Build_Network
Train_Network

'Evaluate Fitness
'BestValue* = Fitness(PopSize%, StrandLength%)
If Net_Error# < BestValue* Then
BestValue# = Net_Error#
BestType% = Net_Type%
BestHiddenNum% = Nbr_Hiddens%(1)
BestFunctionl = Transfer_Function%(2)

End If

Select Case BestType%
Case 0
NeuroGen.txtBestType.Text = "Back Propagation"

Case 1
NeuroGen.txtBestType.Text = "Time Delay"

Case 2
NeuroGen.txtBestType.Text = "Continuous Adaptive"

End Select

'NeuroGen.txtBestType.Text = Format$(BestType%, "0.0000")

NeuroGen.txtBestNum.Text = BestHiddenNum%

'NeuroGen.txtBestNum.Text = Format$(BestHiddenNum%, "0.0000")

Select Case BestFunction%
Case 0
NeuroGen.txtBestFunction.Text = "Logistic Function"

Case 1
NeuroGen.txtBestFunction.Text = "Hyperbolic Tangent"

Case 2
NeuroGen.txtBestFunction.Text = "Linear Transfer"

End Select

'NeuroGen.txtBestFunction.Text = Format$(BestFunction%, "0.0000")

NeuroGen.txtBestRate.Text = Format$(BestValue*, "0.0000")

NeuroGen.txtNetTypel.BackColor = &HFFFFFF
NeuroGen.txtNetType2.BackColor = &HFFFFFF
NeuroGen.txtNetType3.BackColor = &HFFFFFF
NeuroGen.txtNumHiddenl.BackColor = &HFFFFFF
NeuroGen.txtNumHidden2.BackColor = &HFFFFFF
NeuroGen.txtNumHidden3.BackColor = &HFFFFFF
NeuroGen.txtFunctionl.BackColor = &HFFFFFF
NeuroGen.txtFunction2.BackColor = &HFFFFFF
NeuroGen.txtFunction3.BackColor = &HFFFFFF

Next i%

'Select survivors
Nbr_Survivors% = SelectPercent%(Percent*, HighLow%, PopSize%, ChromeValue*(0), Survi

vorList%(0))

'Refill Population
Nbr_Chromes_Created% = RefillClone%(Nbr_Survivors%, PopSize%, StrandLength%, ChromeG

ene%(0, 0), ChromeValue*(0), -SurvivorList%(0))

'Pair for Mating
Nbr_Pairs% = PairRandom%(PopSize%, ParentPair(0))

Module4 - 5

'Exchange Genes
Nbr_Matings% = MateTwoCut%(PopSize%, StrandLength%, Nbr_Pairs%, ChromeGene%(0, 0), P

arentPair%(0))

'Mutate
Nbr_Mutations% = MuteRev%(RandRevRatei, PreserveGeneOne%, PopSizel, StrandLength%, C

hromeGene%(0, 0))
Nbr_Mutations% = MuteRandEx%(RandExRate#, PreserveGeneOne%, PopSize%, StrandLength%,

ChromeGene%(0, 0))
Nbr_Mutations% = CustomMutation(PreserveGeneOne%, PopSize%, StrandLength%)

'Go back to evaluate
Generations% = Generations! + 1

Loop

'Return best intercity distance found
RunGeneticSearch = BestValue#

'Put the mouse back to a pointer
NeuroGen.MousePointer = 1

End Function

Final 1097.3331 Army GAU
Contract No.: DAAH04-96-C-0063

APPENDIX 2
DLL FOR MINIMIZATION GENETIC ALGORITHM

DLL for minimization genetic algorithm

/■>

Last modified by J. Kim 6/97
This version is a callable function minimize(f(),...)
This version is optimized for low memory use:

bits are packed instead of one per byte;
storage is dynamically allocated as needed

#include<Float.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
tinclude <windows.h>

♦include "minimize.h"
#include "crash.h"

// int initFKeyin(char *) ;

int n,i,j , t, k, tt,pp,ngene, slength,geneval,nbit[11], rep = 0, cross;
int p,int_rand,itt_rand, intm_pxval,it2_rand,intn,nb,nbold,ne,neold;
double maximum2,minimum2,maximum,minimum, mold, minold,mold2,minold2;
double gendec, diffmax, diffmin,fac;
int cbit[200], beg[200], dbit;
int maxparent[200],minparent[200],maxparent2[200],minparent2[200] ;
int quot,rem,modd,func,imaxt, imint,imax2,imin2,roop;
char string[10];
long mod[10];
int percent, kol;
int nbrep, nerep, nbmut, nemut, nbmutval, nemutval, nbmutmin, nemutmin,

nbmutmv, nemutmv, nbcross, necross;

short wx, wy, xb, yb, lw, hw;

ldiv_t result;
div_t result2;
div_t result3;

void comparison(void);
void fitfun(double f(double *));
void refitfun(double f(double *));
void maxl(void);
void mini(void);
void remaxl(void);
void remin(void);
void intpat(void);
void reproduction(void);
void mutation(void);
void mutval(void);
void mutmin(void);
void mutminval(void);
void crossover(void);
void decigene(void);
void max_min (double* ord);
void crossoverl(void);

int allocateGeneStorage(void);
void freeGeneStorage(void);

void setBitTo(int, int, int);

voi'd setBit (int, int);
void clearBit(int, int);
void flipBit(int, int);
int bit(int, int);

void setChrof(int, int, double);
void clearChrof(int, int);
double chrof(int, int);

void setFitness(int, double);
double fitness(int);

int numberOfVariables(void) ;
double

arguments[MAX_NUMBER_OF_ARGUMENTS],
IowerBounds[MAX_NUMBER_OF_ARGUMENTS],
upperBounds[MAX_NUMBER_OF_ARGUMENTS],
tolerances[MAX_NUMBER_OF_ARGUMENTS];

// BEGINNING OF ADDITION
#pragma argsused
int CALLBACK LibMain (HANDLE hlnstance,

WORD wDataSeg,
WORD wHeapSize,
LPSTR IpszCmdLine)

{

}

if (wHeapSize > 0)
UnlockData(O);

return 1;

#pragma argsused
int CALLBACK WEP (int nParameter)
{

return 1;
}

int CALLBACK _export functionString(char far *functionString) {
return(initFKeyin(functionString));

// END OF ADDITION

double chrofToArgument(int index,double chrofValue) {
if(mod[index] == 0) {

crashint("minimize: Mod of %d is zero!",index);
}
return(IowerBounds[index] +

(chrofValue / mod[index]) * (upperBounds[index]-IowerBounds[index])
);

}_.

double f(double *);

void CALLBACK _export initializeMinimization(
double passedLowerBounds[],
double passedUpperBounds[],
double passedTolerances[]

) {
int i;

inform("Inside initializeMinimization");
ngene = numberOfVariables();
informlnt("initializeMinimization: ngene: %d", ngene);
for(i=0; i<ngene; i++) {

IowerBounds[i] = passedLowerBounds[i];

upperBounds[i] = passedüpperBounds[i];
tolerances[i] = passedTolerances[i];

}
inform("initializeMinimization: copied arrays");

/* This part determines the values of parameters such as
the number of genes, the number of bits per gene and chromosomes. */

fac = 1.5;
cross = 5;

for(i=0; i<ngene; i++)
nbit[i] = log((upperBounds[i]-lowerBounds[i])/tolerances[i]) / log(2.0) + 1;

slength=0;
f or (i=0; Kngene; i++)

slength += nbit[i];

if(allocateGeneStorage ()) exit(l);

for(j=0; j<ngene; j++) {
mod[j]=l;
for(i=0; i<nbit[j]; i++)
mod[j]=mod[j]*2;

}
/* This part initializes all the matrix elements

with logic value "0".- */

it2_rand=rand();
result3=div(it2_rand,14);
intn=result3.rem+10;

intn=100;

f or (i=0; Kintn; i++)
for(j=0; j<slength; j++)

clearBit(i,j) ;

/* This part generates eight randomly selected
initial genes. */

for(i=0; i<intn; i++)
for(j=0; j<ngene; j++)

clearChrof(i,j);

for(i=0; Kintn; i++)
for(j=0; j<ngene; j++) {

int_rand=rand();
result=ldiv((long)int_rand,mod[j]);
setChrof(i, j, (double)result.rem);

}
/* This part evaluates all matrix elements */

intm_pxval=0;

for(i=0; i<intn; i++) {
intm_pxval=0;
for(j=0; j<ngene; j++) {

geneval = (int)chrof(i,j);
for(t=0; t<nbit[j]; t++) {

k=intm_pxval + t;
result=ldiv((long)geneval,(long)2);
setBitTo(i,k, (int)result.rem);
geneval=(int)result.quot,•
if(t==nbit[j]-l)
intm_pxval=intm_pxval+nbit[j] ;

fitfun(f);

maxi();
mini();
intpat ();
mold = maximum;
minold = minimum;
mold2 = maximum2;
minold2 = minimum2;

doing mutation";

int CALLBACK _export iterateMinimization(int properties [8]) {
// Answer 0 for normal, 1 for done, 2 or greater for erroneous return
int doFuzzyLogic = 1;

inform("Inside iterateMinimization");
nb=0 ;
ne=0;
reproduction();
comparison();
if(doFuzzyLogic) {

if (dbit <= (int)(slength/fac)) {
inform("iterateMinimization: doing crossover");

crossover();
crossoverl();
decigene();
refitfun(f);
remaxl();
remin();
intpat ();

} else {
inform("iterateMinimization:

mutation();
mutval();
mutmin();
mutminval();
decigene();
refitfun(f);
remaxl();
remin();
intpat();

}
} else {

crossover();
crossoverl();
mutation();
mutval();
mutmin();
mutminval();
decigene();
refitfun(f);
remaxl();
remin();
intpat();

}
properties[0] = nb;
properties[1] = ne;
properties[2] = nbcross;
properties[3] = necross;
properties[4] = nbrep;
properties[5] = nerep;
properties[6] = nbmut;
properties[7] = nemut;
inform("iterateMinimization: set properties");

if ((maximum == mold) && (minimum == minold) &&
(imaxt == 0) && (imint == 2) && (imax2 == 1) && (imin2

return 1;
3)) {

.mold =. maximum;
minold = minimum;
mold2 = maximum2;
minold2 = minimum2;
return 0;

}

void CALLBACK _export getResults(
double locationOfMinimum[], double* valueAtMinimum,
double locationOfMaximum[], double* valueAtMaximum

) {
int i ;

*valueAtMinimum = minimum;
*valueAtMaximum = maximum;
for(i=0; i<ngene; i++) {

locationOfMinimumfi] = chrofToArgument(i,chrof(imint,i));
locationOfMaximumfi] = chrofToArgument(i,chrof(imaxt, i)) ;

}
}

VOID CALLBACK _export terminateMinimization(void) {
freeGeneStorage();

void loadFitnessesTo(int loadSize, double f(double *)) {
for(i=0; i<loadSize; i++) {

for(j=0; j<ngene; j++)
arguments[j] = chrofToArgument(j,chrof(i,j));

setFitness(i,f(arguments));
}

}

void fitfun(double f(double *)) {
loadFitnessesTo(intn, f);

}

void refitfun(double f(double *)) {
loadFitnessesTo(ne,f);

}
void maxl(void)
{

maximum=fitness(1);
imaxt=0;
for (i=0; i<intn; i-r+)

{

if (fitness(i)>=maximum)
{
maximum=fitness(i);
imaxt=i;

}
else

{
maximum=maximum;

}

if (imaxt==0)

maximum2=fitness(1);
imax2=l;

else

maximum2=fitness(0);
imax2=0;

fort i-0; Kintn; i++)
{
if (fitness(i)>maximum2 && fitness(i)!=maximum && i != imaxt)

{
maximum2=fitness(i);
imax2=i;

eise

maximum2=maximum2;

}

{

}

'/oid remaxi (void)

imaxt = 0;
maximum = fitness (0);
for(i=0; i<ne; i++){

if (fitness(i) > maximum)
{
maximum = fitness(i);
imaxt = i;

}
else if (fitness(i) == maximum)

imaxt = imaxt;
maximum=fitness (i) ;

eise
{
imaxt=imaxt;
maximum—maximum;

{

}

if (imaxt==0)

eise

for(

{

}

maximum2=fitness(1) ;
imax2=l;

maximum2=fitness (0) ;
imax2=0;

i=0; i<ne; i++)

if (fitness(i)>maximum2 && fitness(i)!=maximum)

maximum2=fitness(i) ;
imax2=i;

eise
{
maximum2=maximum2;

void mini(void)
{

imint = 2;
minimum = maximum;

•for

if

else

for

i-=0; i<intn; i++
{
if (fitness(i)<=minimum)

minimum=fitness(i);
imint=i;

else

imint=imint;
min imum=mi n imum;

imint==0)

minimum2=fitness(1);
imin2=l;

minimum2=fitness(0);
imin2=0;

i=0; i<intn; i++) ■

if (fitness(i)<minimum2 && fitness(i)!=minimum)

minimum2=fitness(i);
imin2=i;

else

imin2=imin2;
minimum2=minimum2;

}

void remin(void)
{

imint=0;
minimum = maximum;
for(i=0; i<ne; i++){

if (fitness(i)<minimum){
minimum=fitness(i);
imint=i;

else if(fitness(i)==minimum){
minimum=fitness(i);
imint=imint;

else{
minimum=minimum;
imint=imint;

}

}

}

}

if (imint==0){
minimum2=fitness(1);
imin2=l;

else!

minimum2=fitness (0) ;
imin2=0;

}

for(i=0; i<ne; i++){
if (fitness(i)<minimum2 && fitness(i)!=minimum){
minimum2=fitness(i) ;
imin2=i;

}
else{
minimum2=minimum2;
imin2 = imin2;

}
}

}

void intpat(void)
{

for(j=0; j<slength; j++)
{
maxparent[j] = bit(imaxt,j);
minparent[j] = bit(imint,j);
maxparent2[j] = bit(imax2,j);
minparent2 [j] = bit.(imin2, j) ;

}

void reproduction(void)

/* This part of program is to perform the reproduction of the maximum
fitness chromesome */

nb=0 ;
ne=4 ;
neold=0;
nbold=0;
for(j=0; j<slength; j++)

{
setBitTo(0,j,maxparent[j]);
setBitTo(1,j,maxparent2[j]);
setBitTo(2,j,minparent[j]);
setBitTo(3,j,minparent2[j]);
}

nbrep = nb;
nerep = ne;
nbold=nb;
neold=ne;

void mutation(void)
{

/* This part of program is to perform mutation of the maximum
fitness chromesome */

nb=neold; /* fred */
ne=neold+slength;

for(i=nb; i<ne; i++)
{
for(j=0; j<slength; j++)

setBitTo(i,j,
(i-neold != j) ? maxparent [j] _: !bit(0,j));

}
nbmut = nb;

nbold=nb;
neold=ne;
nb=neold;
ne=neold+slength;

for(i=nb; i<ne; i++)
for(j=0; j<slength; j++)

setBitTo (i,j,
(i-neold != j) ? maxparent2[j] : !bit(l,j;

nbold=nb;
neold=ne;
nemut = ne;

void mutval(void)
{

/* This part of program is to perform mutation of the maximum
fitness chromesome */

int denom;

nb=neold;
ne=neold+slength;

for(i=nb; i<ne; i++)
for(j=0; j<slength; j++)

setBitTo(i,j,maxparent[j]) ;

for(i=nb; i<ne; i++) {
it2_rand=rand();
result3=div(it2_rand,3);
n=result3.rem+1;
int_rand=rand();
denom = slength-n-1;
denom = (denom<l ? 1 : denom);
result=ldiv((long)int_rand,(long)denom);
p=(int)result.rem+1;

for(j=i-neold; j<=i-neold+n; j++) /* fred ? */
flipBit(i,j);

}
nbmutval = nb;

nbold=nb;
neold=ne; /* fred */
nb=neold;
ne=neold+slength;

for(i=nb; i<ne; i++)
for(j=0; j<slength; j++)

setBitTo(i,j,maxparent[j]);
tt=0;
for(k=0; k<ngene; k++) {

for(i=nb+tt; i<=nb+tt+nbit[k]; i++)
for(j=tt; j<i-neold; j++)

flipBit(i,j);
tt=tt+nbit[k];

}
nbold=nb;
neold=ne;
nemutval = ne;

void mutmin(void)
{

</* This part of program is to perform mutation of the maximum
fitness chromesome */

nb=neold; /* fred */
ne=neold+slength;
nbmutmin = nb;

for(i=nb; i<ne; i++)
for(j=0; j<slength; j++)

setBitTo(i,j,
(i-neold != j) ? minparent[j] : !bit(2,j));

nbold=nb;
neold=ne;
nb=neold;
ne=neold+slength;

for(i=nb; i<ne; i++)
for(j=0; j<slength; j++)

setBitTo'(i,j,
(i-neold != j) ? minparent2[j] : !bit(3,j));

nbold=nb;
neold=ne;
nemutmin = ne;

}

void mutminval(void)
{

/* This part of program is to perform mutation of the maximum
fitness chromesome */

int denom;

nb=neold;
ne=neold+slength;
nbmutmv = nb;

for(i=nb; i<ne; i++)
for(j=0; j<slength; j++)

setBitTo(i,j,minparent[j]) ;

for(i=nb; i<ne; i++) {
it2_rand=rand();
result3=div(it2_rand,3);
n=result3.rem+1; n=2;
int_rand=rand();
denom = slength-n-1;
denom = (denom<l ? 1 : denom);
result=ldiv((long)int_rand,(long)denom);
p=(int)result.rem+1;
for(j=i-neold; j<=i-neold+n; j++)

flipBitfi,j);
}
nbold=nb;
neold=ne;
nb=neold;
ne=neold+slength;

for(i=nb; i<ne; i++)
for(j=0; j<slength; j++)

setBitTo(i,j,minparent[j]);

tt=0;
for(k=0; k<ngene; k++) {

for(i=nb+tt; i<=nb+tt+nbit[k]-1; i++)
for(j=tt; j<i-neold; j++)

flipBit(i,j);
tt=tt+nbit[k];

}

nbold=nb;
neold=ne;
nemutmv = ne;

}

void crossoverl(void)
{

int k, beg, p, q, pp;
div_t result;
int denom;

for(pp = 1; pp<10; pp++) {
result = div(rand(), cross);
q = result.rem + 1;

denom = slength-q-1;
denom = (denom<l ? 1 : denom);
result = div(rand(), denom);
p = result.rem;

nb = neold;
i = nb;

/* CROSSOVER OF MAX and MAX2 */

for(beg = 0; beg < slength - q + 1; beg++) {
k = p;
for(j = 0; j < slength; j++)

setBitTo(i,j,
(j < beg || j >= beg + q) ? maxparent[j] : maxparent2[k++]);

i++;
k = beg;
for(j = 0; j < slength; j++)

setBitTo(i,j,
(j < P I I j >= P + q) ? maxparent2[j] : maxparent[k++]);

i++;
}
ne = i; /* fred? */

neold = ne;
nbold = nb;

/* CROSSOVER OF MIN and MIN2 */

for(beg = 0; beg < slength - q + 1; beg++) {
k = p;
for(j = 0; j < slength; j++)

setBitTo(i,j,
(j < beg I I j >= beg + q) ? minparent[j] : minparent2[k++]);

i++;
k = beg;
for(j =0; j < slength; j++)

setBitTo(i,j,
(j < p I I j >= p + q) ? minparent2[j] : minparent[k++]);

i++;

}
ne = i;

}
neold = ne;
nbold = nb;

void cros'sover (void)
{

/* This part of program is to perform the corssover between the maximum
fitness chromesome and the minimum fitness chromesome */

int denom;

nb=neold;
ne=neold+80;
nbcross = nb;

for(i=nb; i<ne; i=i+2) {
itt_rand=rand();
result2=div(itt_rand,cross);
n=result2.rem+1;
int_rand=rand();
denom = slength-n-1;
denom = (denom<l ? 1 : denom);
result=ldiv((long)int_rand,(long)denom);
p=(int)result.rem;
for(j =0; j < kol; j++)

if (p == beg[i])
if ((p + cbit[i]) > slength)

p -= cbit[j];
else

p += cbit[j]-;

for(j=0; j<slength; j++)
if (p <= j && j < p+n) {

setBitTo(i, j,maxparent[j]);
setBitTo(i+l,j,maxparent2[j]) ;

} else {
setBitTo(i,j,maxparent2[j]);
setBitTo(i+1,j,maxparent[j]);

}
}

nbold=nb;
neold=ne;
nb=neold;
ne=neold+100;

for(i=nb; i<ne; i=i+2) {
itt_rand=rand();
result2=div(itt_rand,cross);
n=result2.rem+1;
int_rand=rand();
denom = slength-n-1;
denom = (denom<l ? 1 : denom);
result=ldiv((long)int_rand,(long)denom);
p=(int)result.rem;
for(j=0; j<slength; j++)

if (p <= j && j < p+n) {
setBitTo(i,j,minparent[j]);
setBitTo(i+1,j,minparent2[j]);

} else {
setBitTo(i,j,minparent2[j]);
setBitTo(i+1,j,minparent[j]);

}
}
nbold=nb;
neold=ne;
necross = ne;

void decigene(void)
{

int kb„ ke;
/* This part is to converet binary to decimal for each gene */

for(i=0; i<ne; i++)
for(j=0; j<ngene; j++)

clearChrof(i, j);

for(i=0; i<ne; i++) {
kb = 0;
for(j=0; j<ngene; j++) {

gendec=0.0;
ke = nbit[j] + kb;
for(k = kb; k < ke; k++) {

gendec=(double)bit(i,k) * pow((double)2.0,
(double)(k-kb));

setChrof(i,j,chrof(i,j) + gendec);
}
kb += nbit[j];

}
i

void comparison(void)
{

int count, jbeg, flag = 0;

i = 0;
cbitfi] = 0;
count = 0;
dbit = 0;

for(j =0; j < slength; j++) {
if (bit(imaxt,j) == bit(imax2,j)) {

dbit++;
count++;
if (flag == 0)

jbeg = j;
flag = 1;

} else if (count >= 2) {
cbit[i] = count;
count = 0;
beg[i] = jbeg;
jbeg = 0;
i++;
flag = 0;

} else {
jbeg = 0;
count = 0;
flag = 0;

}
}

if (count >= 2) {
cbit[i] = count;
beg[i] = jbeg;
i++;

}
kol = i;

Final'1097.3331 Army GAM
Contract No.: DAAH04-96-C-0063

APPENDIX 3
GA GUI FOR DYNAMIC LINK LIBRARY

/* Windows application program with Graphical User Interface
that uses GA DLL routines.
Revised and finalized by J. Kim, August 1997.
Physical Optics Corporation, All Rights Reserved. */

#define STRICT
#include <windows.h>
#include <windowsx.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "dlltest.h"
#include "minimize.h"
// #include "newdll.h"
#pragma warning (disable: 4068)

static char szAppName[] = "GA";
static HWND MainWindow;
static HINSTANCE hlnstance;
int iSelect = 0; // index of list box selection
char IpszBuffer[80], szNumGeneBuffer[80];

PSTR aList[] = {"-xlA2 + 2*xl + 1", "xlA2 - 2*xl + 1", "2*sin(xl) + cos(xl)"};

// The program starts here.' The Window is registered
// and created and the message translation is called.
tpragma argsused
int PASCAL WinMain(HINSTANCE hlnst, HINSTANCE hPrevInstance,

LPSTR IpszCmdParam, int nCmdShow)
{
MSG Msg;

:f (IhPrevInstance)
ir v!Register(hlnst))

return FALSE;

MainWindow = Create(hlnst, nCmdShow);
if (!MainWindow)

return FALSE;
while (GetMessage(&Msg, NULL, 0, 0))
{
TranslateMessage(&Msg);
DispatchMessage(&Msg);

}

}
return Msg.wParam;

// Registration of Window class
BOOL Register(HINSTANCE hlnst)
{
WNDCLASS WndClass;

WndClass.style = CS_HREDRAW | CS_VREDRAW;
WndClass.lpfnWndProc = WndProc;
WndClass.cbClsExtra = 0;
WndClass.cbWndExtra =0; // DLGWINDOWEXTRA; // required for dig window
WndClass.hlnstance = hlnst;
WndClass.hlcon = Loadlcon(NULL, IDI_APPLICATION);
WndClass.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClass.hbrBackground = GetStockBrush(WHITE_BRUSH);
WndClass.IpszMenuName = "GA"; // Window won't be created w/o this.
WndClass.IpszClassName = szAppName;

return RegisterClass (SWndClass);
}

/ Creation of Window
;iWND Create (HINSTANCE hlnst, int nCmdShow)

HWND hwnd;
HDC hDC;

hlnstance = hlnst;

// HWND hwnd = CreateDialog(hlnst, szAppName, 0, NULL);
hwnd = CreateWindow(szAppName, "Genetic Algorithm DLL TEST",

WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CWJJSEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
NULL, NULL, hlnst, NULL);

if (hwnd == NULL)
return hwnd;

// MIL: Write your one-time initialization code here
mi i illinium i mi IIIIIIIIII inn i in mi i IIIIIIIIIIIIIIIIIIII ii 11 ill
II Allocate an application
MappAlloc(M_DEFAULT, SMilApplication);
// Disable MIL error message to be displayed as the usual way
MappControl(M_ERROR, M_PRINT_DISABLE);
// Retrieve previous hanler ptr and user handler ptr
Mapplnquire(M_CURRENT_ERROR_HANDLER_PTR,SHandlerPtr);
Mapplnquire(M_CURRENT_ERROR_HANDLER_USER_PTR,SHandlerUserPtr);
// Hook MIL error on function DisplayError()
MappHookFunction(M_ERROR_CURRENT,DisplayErrorExt,this);
// Allocate a system
MsysAlloc(M_SYSTEM_SETUP,M_DEF_SYSTEM_NUM,M_COMPLETE,&MilSystem);

ShowWindow(hwnd, nCmdShow);
UpdateWindow(hwnd) ;

hDC = GetDC(hwnd);
SetBkColor(hDC, RGB(0, 255, 255)) ;
TextOut(hDC, 61, 210, "locationOfMinimum: " , 23);
ReleaseDC(hwnd, hDC);

return hwnd;
}

// Message translation module

LRESULT CALLBACK _export WndProc(HWND hwnd, UINT Message,
WPARAM wParam, LPARAM lParam)

{
switch(Message)
{
HANDLE_MSG(hwnd, WM_CREATE, ga_OnCreate);
HANDLE_MSG(hwnd, WM_DESTROY, ga_OnDestroy);
HANDLE_MSG(hwnd, WM_COMMAND, ga_OnCommand);
HANDLE_MSG(hwnd, WM_PAINT, ga_OnPaint);
default:

return ga_DefProc(hwnd, Message, wParam, lParam);
}

}

♦pragma argsused
BOOL ga_OnCreate(HWND hwnd, CREATESTRUCT FAR* lpCreateStruct)
{

int i ;
static char *Titles[] = {"minimize", "maximize"};

static char *Params[] = {"-10.0", "10.0", "0.1"};
static char *ParamInfo[] = {"lowerBounds", "upperBounds", "tolerance"};
static char *ProgramInfo[] = {"Num Of Genes:", "Num Of GeneBit:",

"Chromosome Length:"};

hListBoxTitle = CreateWindow("static", "FunctionString LIST",
WS_CHILD | WS_VISIBLE | WS_BORDER | SS_CENTER,
50, 50, 200, 20, hwnd, NULL,
hlnstance, NULL);

hParamlnfoTitle = CreateWindow("static", "Parameters INFO",
WS_CHILD | WS_VISIBLE | WS_BORDER | SS_CENTER,
300, 50, 240, 20, hwnd, NULL,
hlnstance, NULL);

hOutputTitle = CreateWindow("static", "Optimized Value",
WS_CHILD | WS_VISIBLE | WS_BORDER | SS_CENTER,
51, 180, 198, 20, hwnd, NULL,
hlnstance, NULL);

for (i=0; i<3; i++)
hParamInfo[i] = CreateWindow("static", Paramlnfo[i],

WS_CHILD | WS_VISIBLE | WS_BORDER | SS_CENTER,
300, 70 + i*20, 140, 20, hwnd, NULL,
hlnstance, NULL);

for (i=0; i<3; i++)
hProgrammerlnfoTitle[i] = CreateWindow("static", Programlnfo[i] ,

WS_CHILD | WS_VISIBLE | WS_BORDER | SS_CENTER,
300, 220 + i*20, 140, 20, hwnd, NULL,
hlnstance, NULL);

/*
for (i=0; i<3; i++)
hProgrammerInfo[i] = CreateWindow("static", NULL,

WS_CHILD | WS_VISIBLE | WS_BORDER | SS_CENTER,
300 + 140, 220 + i*20, 100, 20, hwnd, NULL,
hlnstance, NULL);

*/
hListBox = CreateWindow("listbox", NULL,

WS_CHILD | WS_VISIBLE | LBS_STANDARD,
51, 70, 198, 80, hwnd, ID_LISTBOX,
hlnstance, NULL);

hOkButton = CreateWindow("button", "OPTIMIZE",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
51, 280, 120, 40, hwnd, ID_OK,
hlnstance, NULL);

for (i=0; i<3; i++)
hEditBox[i] = CreateWindow("edit", Params[i],

WS_CHILD | WS_VISIBLE | WS_BORDER | ES_CENTER,
440, 70 + (i*20), 100, 20, hwnd, NULL,
hlnstance, NULL);

hGroupBox = CreateWindow("button", "Optimization Mode",
WS_CHILD | WS_VISIBLE | BS_GROUPBOX,
300, 150, 240, 50, hwnd, NULL,
hlnstance, NULL);

Buttonwindows[0] = CreateWindow("button", Titles[0],
WS_CHILD | WS_VISIBLE | BS_AUTORADIOBUTTON |
WS_TABSTOP,
320, 170, 90, 20,
hwnd, ID_MINIMAX,
hlnstance, NULL);

Buttonwindows[1] = CreateWindow("button", Titles[1],
WS_CHILD | WS_VISIBLE | BS_AUTORADIOBUTTON

I WS_GROUP,
300 + 120, 170, 90, 20,
hwnd, ID_MINIMAX + 100,
hlnstance, NULL);

for (i=0; i<3; i++)
SendMessage(hListBox, LB_ADDSTRING, 0,

(LPARAM)((LPCSTR)aList[i]));

SendMessagethListBox, LB_SETCURSEL, 0, 0L);

Button_SetCheck(ButtonWindows[0], TRUE);

return TRUE;

#pragma argsused
void ga OnDestroy(HWND hwnd)
{

}
PostQuitMessage(0) ;

fpragma argsused
void ga_OnCommand(HWND hwnd, int id, HWND hwndCtl,

UINT codeNotify)
{

char functionStr[80] , strl[80], str2[80], str3[80];
double lowerBounds[1] ;
double upperBounds[1] ;
double tolerances[1];
int result, done = 0, finalResult = 0;
int props[8];
double locationOfMinimumfl], locationOfMaximum[l] ;
double valueAtMinimum, valueAtMaximum;
double optimumLoc;
// char *minStr;
int ngene, chromelength;
HDC hDC;
// int dec, sign, ndig = 5;

switch(id)
{
case ID_OK:

iSelect = (int)SendMessage(hListBox, LB_GETCURSEL, 0, 0L)
SendMessage(hListBox, LB_GETTEXT, iSelect, functionStr);

GetWindowText(hEditBox[0], strl, 10)
GetWindowText(hEditBox[l], str2, 10)
GetWindowText(hEditBox[2], str3, 10)

lowerBounds[0] = atof(strl)
upperBounds[0] = atof(str2)
tolerances[0] = atof (str3)

functionString(functionStr);

ngene = numberOfVars();
wsprintf(szNumGeneBuffer, "

// 10.0;
// 0.1;

%u", ngene);

initializeMinimization(lowerBounds,
upperBounds,
tolerances);

while (!done) {
result = iterateMinimization(props
if (result == 2) {

finalResult = -1;
done = 1;

}
else if (result == 1) {

done = 1;
}

}
// if (finalResult != 0)
// return (finalResult);

getResults(locationOfMinimum, SvalueAtMinimum,
locationOfMaximum, SvalueAtMaximum);

if (OptMode == MINIMIZE) {
optimumLoc = locationOfMinimum[0];
wsprintf(IpszBuffer, "locationOfMinimum: %d", (int)optimumLoc);

}
else if (OptMode == MAXIMIZE) {

optimumLoc = locationOfMaximum[0];
wsprintf(IpszBuffer, "locationOfMaximum: %d", (int)optimumLoc);

}
else {

wsprintf(IpszBuffer, "Do Nothing!!!", NULL);

// SetWindowText(hEditBoxl, IpszBuffer);

terminateMinimization();

InvalidateRect(hwnd, NULL, TRUE);
break;

case ID_MINIMAX:
OptMode = MINIMIZE;

hDC = GetDC(hwnd);
SetBkColor(hDC, RGB(0, 255, 255)) ;
TextOut(hDC, 61, 210, "locationOfMinimum:
ReleaseDC(hwnd, hDC);

break;

", 23);

case ID_MINIMAX + 100:
OptMode = MAXIMIZE;

hDC = GetDC(hwnd);
SetBkColor(hDC, RGB(0, 255, 255));
TextOut(hDC, 61, 210, "locationOfMaximum:
ReleaseDC(hwnd, hDC);

break;

", 23);

void ga_OnPaint(HWND hwnd)
{

HDC hDC;
PAINTSTRUCT ps;
RECT rect;
int cxClient, cyClient;

hDC = BeginPaint(hwnd, &ps);
SetBkColor(hDC, RGB(0, 255, 255));
TextOut(hDC, 61, 210, IpszBuffer, strlen(IpszBuffer));
TextOut(hDC, 440, 220, szNumGeneBuffer, strlen(szNumGeneBuffer));
EndPaint(hwnd, &ps);

